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SUMMARY

In contrast with previous years, no new meteorological satellite
data were processed during the October 1971-September 1972 reporting
period. Rather, vast amounts of satellite measurements were applied
to in-depth studies related to:

a) Long-range weather forecasting and the study of short-

term climate variations;
b) The earth's environment as seen from space, including
energy transport in the oceans and the first quanti-
tative survey of the surface albedo of land areas; and
c) The Global Atmospheric Research Program (GARP) by means
of studies of the earth's cloud cover and through testing
of a method to parameterize solar energy absorption in
the atmosphere and oceans (separately) using satellite
measurements. This method is needed to support the 1978
First GARP Global Experiment.
All of the applications are concerned with aspects of the study of the
earth's radiation budget, the central area of grant research. Measure-
ment and study of clouds using satellite data is a closely related
problem. Methods and sensors to acquire better radiation budget and
cloud data from future satellite systems can be guided by the applica-
tion studies; some work leading in this direction was begun during the
reporting period.
Overall the grant research is exceptionally timely. The satellite

measurements are being applied to problems of high contemporary interest

such as weather forecasting, the earth's global environment, short-term



climate variations and the possiﬁle impact of man on regional and global
weather and climate. In addition, the satellite data are under study

at a time when numerical models of the atmosphere are available to ailow
test and extrapolation of ideas and hypotheses derived from the satel-
lite measurements.

Continuing research to be proposed under this grant will extend the
application of the existing satellite data to the problems noted above,
take advantage of new measurements from the polar (i.e., NIMBUS) and
geosynchronous (i.e., SMS) satellites, and make even more use of the

numerical models in GARP related research based on the global satellite

- measurements.



1.0 INTRODUCTION

During this second year of research under GRANT NGR 06-002-102, the
scientific results noted below have come from detailed study of measure-
ments from meteorological satellités as they can be applied to present-
~day day problems of weather forecasting, short-term climate study and
observations of the global atmosphere, ocean and land surface.

Two students (J. Ellis and P. Downey) have completed M.S. theses
under grant sponsership, a post-doctoral visitor (Dr. H. Korff) worked
partly on our projects, and two students (J. Ellis and G. Campbell) are
Ph.D.{candidates being supported by this grant. Cooperative Nimbus-3
radiation bﬁdget data processing with E. Raschke, W. Bandeen and M. |
Pasternak in the first year of grant work lead to final drafts of pub-
lications of these basic results\during the period of this report. In
addition, new cooperative efforts with other LMES scientists are underway

in areas of cloud study and determination of surface albedo.

2.0 DISCUSSION OF SCIENTIFIC RESULTS1

a) Radiation Budget Results from the NIMBUS-3 Satellite

After data processing and production of 15-day average maps of
planetary albedo, infrared radiant exitance, net radiation balance, etc.,

at IMES, the annual maps and averages were computed at Colorado State

e,
B

lln view of the economics necessary in research at the present time, de-
tailed discussion of the scientific results will be presented through
the attachment of theses, publications and technical reports in Appendix
A. A synthesis is still provided and considerable savings accrue by not
- retyping and reproducing the results. '



University. Preliminary results were published by Vonder Haar et al.
(1972) - Appendix Al. A synopsis of all satéllite radiation budget mea-
surements‘during the 1960's, inclﬁding NIMBUS-3 data, is provided by
Vonder Haar and Raschke (1972) - Appendix A2. In general, NIMBUS-3

data confirm the earlier satellite results reported by Vonder Haar and
Suomi (1971) and have provided the first detailed measurements of geo-
graphical variations in the earth's radiation budget. Extensive reports
of the NIMBUS-3 results have been written under grant sponsership and
will be published in journals and as a NASA Technical Note in 1973.
(There is the possibility that a few more days of radiation budget data

from NIMBUS-3 might be processed).

b) Studies of the Solar Energy Absorption in the Atmosphere and
the Oceans .

Vonder Haar et al. (1972) - Appendix A3 - points out how measurements
of planetary albedo from satellites can be used to study the mean value
and variance of solar energy reaching the ground. Continued work in this
area is important for planning ways to tap solar energy to ease our pre-
sent energy crisis. Downey (1972) - Appendix A4 - used NIMBUS 3 measure-
ments, the world-wide network of solar energy measurements, cloud-cover
inferred (with difficulty) from vidicon data from ESSA 9 and ITOS-1, and
some radiosonde humidity data to develop a method to parameterize the
séparate absorption of solar energy in the ocean and atmosphefe. The
method requires refinement, but if successful would allow global solar
absorption data to be derived using only satellite measurements. This

would be an important contribution to FGGE of GARP.



c) Studies of the Earth's Oceans -and Surface Characteristics

Satellite radiationvbudget measurements over the northern hemisphere
were combined with radiosonde data to derive a new estimate of the pble-
ward energy transport by oceans (Vonder Haar and Oort, 1973 - Appendix AS).
Direct ocean measurements are not possible with our present technology
and thus the results derived &ith heavy dependence on satellite data are
the primary data that will aid the development of numerical models of
the ocean circulation. Since the role of the oceans was found to be
more important, the need for increased air-sea energy exchange in mid-
latitudes has been raised by this work.

A new study, in cooperation with NASA scientists, will use NIMBUS-3
data to derive the seasonal variation (and annual mean) surface albedo
over land areas. This is a fundamental background measurement needed

by both numerical modelers and those concerned with remote sensing from

satellites.

d) Natural Variation of the Earth's Radiation Budget and its

Relation with Circulation of the Atmosphere

Once NIMBUS-3 and earlier satellite radiatioﬂ budget data have
been processed, mapped and averaged, their application for significant
research contribution just begins. Using all available data thus far
(17 seasons) Vonder Haar (1972) - Appendix 6 - presented the first
detailed phenomenological study of variations in the earth?s radiation
budget. Such studies can only be done from satellite datag they cannot
be based on calculation. Results are currently under study but already
show that year-to-year and season-to-season variations will provide much

information about regional weather anamolies, biological response and



perhaps even allow long-range weather forecasting and shbrt-term climate
monitoring based on satellite data. In this regard, the radiation budget
data were combined with northern hemisphere circulation data in a study
by Ellis (1972) - Appendix 7. Results of this most interesting work
revealed an apparent lag relation that is presently being checked. The

next step are diagnostic model studies guided by the satellite results.

e) Other Research under Grant Auspices

Korff and Vonder Haar (1972) - Appendix A8 - reported results of a
small measurement program to derive the variation of total directional
" reflectance of snow. These data were used to check a method required
to be used in processing NIMBUS-3 measurements over Greenland and
Antarctic.

Downey et al. (1972) - Appendix A9 - completéd a study of extreme
and persistent cloud cover during 1969-70 (the NIMBUS-3 period). The
study was reqﬁested by the JOC of GARP and‘was used by them to plan de-
ployment of buoys in the southern oceans during the upcoming FGGE. In
addition, Downey (1972) used the cloud data in his solar energy study.

The principal investigator attended a working meeting of COSPAR WG6
with grant support. He contributed to the radiation budget, cloud mea-
surement, and climate model portion of a document entitled "Application
of Space Techniques to some Environmental Problems'"; a report to the United
Nations Conference. i

In addition, with the encouragement of NASA scientists, the principal
investigator-considered the problem of future measurements of the earth's

radiation budget by:

N el ree




i) leading a team in proposing for an engineering design -
study for an "Earth Integral Radiometer to Measure the
Long-Term Global Radiation Budget for Climate Study ; and
ii) participating in a team that proposed a "Long-Term

Zonal Earth Energy Budget Experiment"
.Although neither effort received funding to begin engineering study, it
is hoped that continued cooperation with NASA scientists will provide the
needed start on optimum systems to measure radiation budget in the near
future. Work in this line, addressed to the genefal time and space

sampling problem is presently underway, but the engineering must begin

soon.

3.0 PROGRAM FOR THE NEXT REPORTING PERIOD

A proposal for an extension of grant research was accepted by NASA
in September 1972 for the period through September i973. In view of the
many significant problems of a timely nature and the good results obtained
thus far another grant extension will be proposed to continue this joint

research with LMES.
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THE RADIATION BUDGET OF THE EARTH-ATMOSPHERE SYSTEM
AS MEASURED FROM THE NIMBUS 3 SATELLITE (1969-1970)

T. H. VoxpEr Haar?, E. Rascuke®, M. PasterRNAK® and W. BANDEEN®
>

& Colorado State University, Fort Collins, Col., USA
b Ruhr-Universitit Bochum, Bochum, FRG
¢ Goddard Space Flight Center, Greenbelt, Md, USA

Measurements of the exchange of thermal and solar radiative energy between earth
and space give information about the global climate, the prime forcing function that
drives the circulation of the oceans and the atmosphere, and the budgets of radiative
energy of local regions.

Data from the Medium Resolution Infrared Radiometer (MRIR) experiment on Nimbus 3
have provided global radiance measurements during four seasons (April 1969-February
1970). From these data values of the total radiation budget of the earth-atmosphere
system were derived on varying time and space scales and compared with previous satellite
measurements and theoretical computations.

Results confirm earlier satellite measurements. They show a warmer [254° vs. 250 °K]
and darker [albedo: 28299, vs. 35%] planet than was previously believed: most of the
radiative energy input in excess of those older results in tropical regions, significant
geographical variation of the local radiation budgets, a very small seasonal variation in
global energy exchange with space, and higher poleward energy transport requirements.
In addition, the Nimbus 3 data offer the first medium areal resolution views of both
the northern and southern hemispheres’ radiation budgets during all seasons.

1. Introduction

Measurements from meteorological satellites allow study of the natural
variation of energy exchange between earth and space. During the 1960,
a large amount of low area resolution (smoothed) data was acquired [1] to
provide results on the planetary scale. Subsequently, global observations from
Nimbus 2 in 1966 [2] provided independent information on the planetary scale
as well as a first view of the higher resolution radiation patterns during the
north in summer only. '

This paper contains latest results from the Nimbus 3 satellite measurements
in 1969 and 1970. Some preliminary comparisons between Nimbus 2 and 3
data (June 1966-1969) have already shown good agreement [3].

2. The Radiation Measurements

A column of the earth’s surface plus atmosphere ranging over any siz
domain has a radiation budget which is determined by the net radiation flux
at the top of the atmosphere. It results from incoming solar radiation flux
(derived from knowledge of the solar constant, chosen as 1.95 cal em™2 min~1

33%*
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[4]) and the outgoing fluxes of emitted thermal and reflected and scattered
solar radiation. The ratic of the latter to the incoming flux is the planetary
albedo. Dimensions are energy per area per time (e.g. cal cmm™% min~') cxcept
albedo, which is given as a percentage. All values were derived as daily
averages.

Nimbus 3 satellite was launched on 14 April 1969, into a 1100 km sun-
synchronous orbit with ascending node near 1130 LT. These orbit elements
were maintained the same throughout the data period for the MRIR experiment
(intermittent from launch through early February 1970). A description of
the cross-track scanning MRIR experiment, calibration, and data reduction
is givenn [5]. Detectors were chopped thermistor bolometers in five separately
filtered channels (6.5-7.0, 10-11, 14.5-15.5, 20-23, and 0.2-4.0 pm). Procedures
for processing the radiance measurements are described in detail for the similar
Nimbus 2 experiment in {2] and for the Nimbus 3 in [3].

Total infrared radiant emittance Wy, is calculated with the use of all four
channels of infrared measurements in a regression method based upon atmos-
phere model calculations; a limb-darkening correction is used for non-nadir
measurements. Planetary albedo values are derived to represent the daily
average of this parameter at the location of measurement. This requires
integration over the entire daylight period not oniy to account for the variation
in incoming solar energy, but also to account for the non-isotropic bi-directional
reflectance characteristics of the scene measured. Three angular reflectance
models were applied (ice, clouds, and ocean) to the appropriate measurements
of reflected radiance. They were derived from aircraft, satellite, and balloon
observations. Error analyses of the basic radiation data and the processing

. techniques are in progress.

The special temporal sampling characteristics from the sun-synchronous orbit
of Nimbus 3 allow measurements over most of the (non-polar) world near
1130 and 2330 LT. In regions where a pronounced diurnal variation of cloud
cover or surface conditions may be anticipated, such as in most tropical land
areas, the radiation budget results from Nimbus 3 must be interpreted accord-
ingly. :

3. Radiation Budget Results

For data recording reasons, only a sample of days in the four seasons of
Nimbus 3 coverage are used to represent each specilic season. For this paper
the days are 15-30 April 1969, 1-15 July 1969, 3-17 October 1969, 20 January-
3 February 1970. “Annual” values are formed from averages of these seagsonal
samples.

3.1. Annual and Seasonal Averages for the Global Case
Table 1 lists a comparison of results from earlier meteorological satellites of
the United States, from Nimbus 3, and from medium resolution sensors carried
on Meteor satellites (infrared only) during 1969-1970 [6]. The mean values
from the early satellites agree with the Nimbus 3 values to within 3-4%,
which is almost the measurement accuracy.
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Table 1

Global radiation budget — outgoing long-wave radiation fluxes
(cal cm~2 min~') and albedo (%)

Satellites Nimbus 3 Meteor 2

1962-1966 1969-1970 1969-1970
March-May  0.33 (309%) 0.34 (29%) 0.37
June-Aug. 0.34 (269,) 0.36 (289) 0.37
Sept.—Nov. 0.34 (289%,) 0.35 (289%) 0.37
Dec.~Feb. 0.33 (31%) 0.34 (29%) 0.35
Annual 0.34 (309%) 0.35 (299%) 0.36
Annual
net radiation 0.00 0.00 —

On the annual scale they both show that the planet is warmer (outgoing
flux of long-wave radiation Wy = 0.34-0.35 vs. 0.325 cal cm™2 min~?!) and
darker (4 = 28-309, vs. 35%,) than was believed before the satellite meas-
urements [7]. These data point out the lack of a pronounced seasonal
variation of the global energy exchange with space. Infrared measurements
from Meteor confirm this, even though they are systematically higher than
other measurements. Annual net radiation values of 0.00 indicate no net
gain or loss of energy to within measurement accuracy (the magnitude depends,
of course, on the chosen solar constant). '

3.2, Results for Latitude Zones
The annual course of insolation has emphasized study of the earth-atmosphere
system in a zonally symmetric mode. Figs. 1, 2, and 3 show the satellite
radiation budget data in this context.
In Fig. 1, annual values from the two independent satellite experiments
both show that pre-satellite calculations significantly overestimated the albedo
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Fig. 1. Comparison of mean annual values of planetéry albedo and infrared radiant
emittance measured from Nimbus3 (A -- - A), from earlier satellites [1] (06— — @),
and calculated in pre-satellite days [7] (O).
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Fig. 3. Time latitude section of radiation balance measured from Nimbus 3.
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in the tropics and uniformly underestimated infrared energy to space at all
latitudes. Thus when viewed from space the plant appears “darker’ primarily
in the tropics, and “warmer” from equator to pole.

Fig. 2 shows seasonal values of net radiation. The gradient of this parameter
with latitude is the ultimate driving force for our planetary circulations. The
Nimbus 3 values for 1969 differ from earlier satellite measured values [17 in
that the summer gradients are greater and less in the southern and northern
hemispheres, respectively. This points out the possibility of interannual
variation [1], now under further study. Interseasonal trends of zonal averages
of the net radiation can be seen in the time-latitude section in Fig. 3. Here
the area of radiative surplus migrates with sun’s declination. Major surplus
areas are the subtropics of both hemispheres; they do not present mirror images
in the two hemispheres, a consequent in part of different land masses.

3.3. Geographical Variations of Radiation Budget

A zonally symmetric view of energy exchange between earth and space
(Figs. 1-3) neglects significant longitudinal variations caused by semi-perma-
nent circulation features and land masses even on the longest time-averaged
periods [1]. The MRIR experiment allows detailed study of this variation and
thus of the local radiation budgets. Fig. 4 depicts variations of the planetary
albedo measurements during 1-15 July 1969. Bright features such as the Sahara
desert, Indian monsoon, intertropical convergence zone, and regions of persistent
stratus cloud can be noted by relatively high values of albedo. Portions of the
subtropical ocean areas must have been virtually cloudfree; they have albedos
measured as low as 109,

3.4. Implications regarding Atmospheric Transport Processes

Over a time period (for example, annual) when all energy storage in the
land, oceans and atmosphere is negiigible, the measured radiation budget
represents the local energy budget of an earth-atmosphere column. In this
case an integration from pole to pole of the net energy excess or deficit in each
column allows derivation of the net horizontal energy transport required by
the atmosphere and oceans combined. The magnitude of this transport is
a measure of the “vigor” of the fluid circulation. Fig. 5 shows the transport
requirements inferred with these assumptions from the Nimbus 3 measurements,
from the earlier satellite measurements [1], and from pre-satellite [5] and
recent [8] calculations. The calculation results [6, 8] are based on relatively
simple radiative transfer methods applied to imperfectly known climatological
descriptions of atmospheric conditions.

In the northern hemisphere, as may be expected from § 3.2, both meas-
urement sets indicate that more energy is transported than was believed before
the satellite measurements. For the southern hemisphere the satellite data
from Nimbus 3 depart from both earlier measurements and recent calculations.
In general, however, both satellite data sets as well as the very recent cal-
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Fig. 5. Comparison of required energy transport by atmosphere and oceans as inferred
from satellite measurements from earlier satellites [1] (— — —) and Nimbus 3 ( )
 and from calculations before satellites [7] (O) and after satellites [8] (A)-

culations [8] are in agreement that the poleward transport of energy by atmos-
pheric and oceanic circulation is stronger (by 15-20)%,) than was previously
believed.

4. Summary and Conclusions

Results of the Nimbus 3 radiation data confirm the long-term planetary
scale measurements of radiation budget from earlier satellites of a warmer and
darker planet, with a more active horizontal circulation thus required. Inter-
annual variations of the radiation budget and its components at various scales
need further investigations based on satellite experiments which should be
considered to congist of more than ten years duration and where the same
evaluation methods are used and the solar constant is accurately tracked. Then
relative changes of the budget might be observed, which are due to changes
in the circulation patterns and, possibly also of the pollution of the system
land-ocean—atmosphere.
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ABSTRACT

MEASUREMENTS OF THE ENERGY EXCHANGE BETWEEN
EARTH AND SPACE FROM SATELLITES

DURING THE 1960's

The net radiation budget of the earth-atmosphere system can be ob-
tained from satellite measurements of the infrared radiant emittance
and reflected and scattered solar radiation along with a knowledge of
the solar constant. During the 1960's experimental and operational
meteofological satellites carrying thermistor bolometer sensors de-
signed for this task were in orbit during about 60 months. Our paper
presents a synopsis of results from these measurements including: a
gloﬁal planetary albedo of 30%, long-term global radiation balance with-
in measurement accuracy (2-3%), the net equator-to-pole radiation gra-
dients (and their variation) that drive our atmospheric and oceanic
circulations, as well as selected measurements of radiation budget terms
over particular geographical areas. Future satellite experiments are
planned to allow measurements of higher precision and with better space
and time sampling. However, the results thus far have provided a solid
descriptive base for more detailed diagnostic studies, especially re-
garding the significance of observed interénnual radiation budget varia-
tions and also the separate consideration of energetics of the atmosphere
and the ocean. i

T. H. Vonder Haar
Colorado State University

E. Raschke
Ruhr-Universitat Bochum



MEASUREMENTS OF THE ENERGY EXCHANGE BETWEEN
EARTH AND SPACE FROM SATELLITES

DURING THE 1960's

I. Introduction

While atmospheric scientists have been interested in the global
radiation budget for more than 100 years, measurements have been avail-
able only in the last twelve years. Earth-orbiting satellites provided
the platform for radiation budget measurements; first experiments were
flown on Explorer VII in 1959.

As in earlier days, our desire to study the radiation budget is
high because:

a) global climate is a result of the total energy exchange
(by radiation) between our planet and space,

b) the large-scale atmospheric and oceanic circulations
are forced fundamentally by the gradient of radiation
exchange with space between pole and equator,

and

c) local area radiation budgets at the ''top of the atmosphere’
are in an important boundary condition for local and re-
gional energetics that affect both the physical and bio-
logical processes in the region of interest.

In recent years, radiation budget measurements from satellites have also
been recognized as important controls for checking the performance of

numerical models of the atmosphere's circulation on a glcbal scale.

Invited Paper M-70 presented at the Joint Meeting of the German
Physical and Meteorological Societies, Essen, Sept.-Oct. 1971,
To be published in Annalen der Meteorologie, 1972.




Figure 1 shows a schematic diagram of the terms of the radiation
budget of the earth-atmosphere system. Three terms are shown, with the
net radiation or radiation budget, Qn’ as the residual of:

HS O, ¢, ) - the direct irradiance of solar energy at p = 0
(computed from an assumed value of the solar
constant, IO’ 1.95 cal*cm™l-min~1)

minus We (A, ¢, t) - solar energy reflected and scattered from
clouds, atmospheric gas and aerosol, and the
surface (measured from the satellite)

minus W A, 9, t) - the infrared radiant emittance from clouds,
atmospheric constituents and the surface
(measured from the satellite)

All dimensions (as thesolar constant) are energy per unit area and
unit time. The functionals \ ,¢, t) refer to longitude, latitude and
time. They serve to note the time and space scale dependence of the
radiation budget; our schematic box could apply to a unit area at some
location or to the entire global envelope, Note that the planetary

albedo, A, is the ratio Wg/Hg.

Two basically different types of radiation budget experiments

have been flown on U.S. satellites [SUOMI, et al. (1967), McCULLOCH

(1969)]. They are shown in Figure 2 as:

a) the medium resolution infrared radiometer; it has a narrow
angle (5 degree) field of view, scanning capability by rota-
ting a mirror, four infrared channels and one to measure the
radiance of reflected solar radiation.

and b) omnidirectional (27 sterdian) sensors named the Wisconsin hem~
isphere or Wisconsin plate radiometers (cones provide special
checks for these omnidirectional sensors); they always consist
of matched pairs of black and white sensors, the former to
measure all radiation (solar and infrared), the latter only
the infrared. . '



Both types of experiments use the same radiation detectors, thermistor
bolometers. All other experiment parameteré (field-of-view, time con-
stant, sbectral response, and method of data reduction) differ. Further-
more, the basic radiation measurement (of the radiation budget parameters
shown in Figure 1) for the scanning radiometer is radiance, while the

omnidirectional sensors measure radiant power. Data reduction techni-

ques (more complex for the scanning radiometer data) are employed to
derive the desired values of Wg (A, ¢, t) and Wy O, é, t). From the
viewpoint of scientific use, either system should be acceptable for
studying the earths radiation budget. However, the mcre complex scanning
radiometer system does provide radiation budget measurements at one order
df magnitude finer on the space scale. Both experiments undergo absolute
calibration before launch into space. In addition, the omnidirectional
sensors are checked against the direct solar energy during each orbit;
the scanning radiometer views a reference source of known temperature'on
the satellite, In this way, relative calibration in space is provided
for all measurements by the Wisconsin experiment and for the infrared
measurements from the scanning radiometér. Reflected solar radiance
measurements from the latter are checked against regipns on the earth

such as deserts.
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IT. Results for the Entire Earth and for Latitude Zones

VONDERHAAR and SUOMI [1971] have discussed results from satellite
experiments in orbit before 1967. RASCHKE and BANDEEN [1970] have dis-
cussed two-and-one-half months of 1966 scanning radiometer data in
detail, Both of these references cite numerous previous papers dealing
with both the methods of data reduction and special stﬁdies using the
radiation budget measurements. The present paper discusses all of the
measurements available thus far, including those acquired from NIMBUS-
ITI in 1969 and 1970.1

Table 1 summarizes the measurements of the.annual and seasonal
radiation budget of the entire planet. First value is infrared radiant
emittance, Wy; followed by planetary albedo (A). Accuracy estimates
for the results of the U.S. experiments are plus-or-minus one unit of
the least significant digits shown; this yields relative measurement
accuracies of about 3%.

For the annual case, both the earliest satellite data set (1962-
66) and the most recent (1969-70) show that our earth-atmosphere system
has a planetary albedo of 29-30%, outgoing infrared radiation to space

2-min"l, and net globél radiation balance (within

averaging 0,34 cal*cm™
measurement accuracy) when the solar constant is 1.95 cal'cm—z'min_l.

The infrared emission is equivalent to a black-body temperature of

(255°K), higher than the value estimated by LONDON [1957] before the

1See also Raschke, et. al. (1971), Vonder Haar, et. al. (1972, and
Raschke, et. al. (1972) for a more detailed discussion of the

Nimbus III measurements.



TABLE 1

GLOBAL RADIATION BUDGET

SATELLITES NIMBUS-II METEOR-Ii

1962-1966 1969-70 1969-70
MAM | .33(30%) | .35(29%) .37
JJA .34 (26%) | .35 (28%) 37
SON .34 (28%) | .35 (28%) 37
DJF 33 (31%) | .34 (29%) .35
ANNUAL | 34 (30%) | .34 (29%) .36
ANNUAL NET 00 00 .

RADIATION

(72F



satéllite experiments. Also, our planet is darker than was previously
believed; it has a lower albedo than the early value of 35%. Recall
that these results have now been obtained from two different types of

satellite experiments, thus giving further assurance of the accuracy
of both data sets.

Seasonal variation of the planetary radiation budget is small.
A very small tendency for a brighter and colder planet during the period
Décember - May is seen in both sets of U.S. data. Infrared experiments
on METEOR satellites in 1969-70 (BOLDYREV and VETLOV [1970]) also
detected a slightly colder earth during the Northern Hemisphere winter.

The annual case is especially interesting when we relax the space
scale and consider the satellite measurements gathered into averages
for each specific latitude zone. Figure 3 shows the resulting mean
meridianal profiles for (a) the satellite measurements, 1962-66, (b)
NIMBUS-III results and (c) the estimates by LONDON in pre-satellite daysl.
As in the global case (Table 1) the satellite sets show general agreement
even though they were not obtained during the same yéars. All measurements
differ strikingly from the estimates of planetary albedo in the tropics.
The darker planet noted previously is due primarily to a lower albedo in
the region 0 - 30°N than was previously believed. Apparently, the cal-~
culations of LONDON and others more than ten years ago used over-estimates
of opaque (reflecting) cloud amount in the tropics. Separate evidence for
this has been noted by VONDERHAAR and HANSON [1969]. They found that the
‘ measured solar radiation reaching the surface in thevtropics is greater than

all previous estimates.

1 BOLLE [1971] compares the satellite measurements of VONDERHAAR and

SUOMI [1971] ((a) above) with very recent, new estimates by LONDON and
SASAMORI [1970]. The new estimates are now in much better agreement
with the measurements.
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Infrared radiation to space is measured to be slightly greater
than was calculated at all latitudes. The significance of the overall
differences between measurements and earlier calculations is seen in
Figure 4, Here; the net energy gain or loss of two earth-atmosphere
zones is shown for the annuai time period (horizontal lines) and for mean
seasonal conditions (shaded bar, I=DJF). LONDON's results for the annual
case are also shown. In the region O - 10°N much more energy ( 1.5 x 1016
cal'min~1) is gained during the year than was.previously estimated. At
polar regions the old and new values are much closer, giﬁing the same
depiction as would have been inferred from Figure 3: more energy gained
by our atmosphere and oceans at low latitudes, the need for increased
poleward energy transport, slightly increased energy loss to space through-
out the mid-latitudes,

Most of the energy gain is to the tropical oceans. Thus, the re-
quired increase in poleward transport must be accomplished by either
direct sensible heat flux by the oceans, or increased alr-sea energy
exchange followed by energy transport in the atmOSphefe through some
combination of the sensible, potential and latent energy mechanisms.

On a seasonal basis, the energy gain and loss shown in Figure 4 varies

in the expected relative pattern. Note, however, that a small net energy

gain is measured over the North polar cap during summer. This energy,

together with that advected from lower latitudes combines to allow the

warming of air and melting of surface snow and ice characteristic of

that season,

III. Measured Variation of the Radiation Gradient from Equator to the
Poles ‘

In the previous section we have seen the results and hypotheses that
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are based on consideration of the satellite radiation budget ﬁeasurements
over a long time scale (5-6 &ears). Of special interest also are the
measured values in specific seaséns and their interannual variation.
Figure 5 displays a simple index, ARNE/P, used as a first look at the
fundamental net radiation gradient between equator and pole. On the
very longterm this gradient depicts the thermal forcing of our earth-
atmosphere system; values of the mean annual gradient for both the
northern and southern hemispheres are shown as horizontal lines in
Figure 4. They are nearly the same, with the northern hemisphere.
slightly larger.

The same figure shows mean seasonal values (dots) and the range of
gradients measured from satellites.in specific seasons. (range bars).
In both hemispheres the gradient is least in summer and greatest in fall,
with the most abrupt change between these two seasons. Mean winter
values are less than those of fall due to a gradient reversal in polar
regions not considered by our simple index. Therefore, the fall and
winter values should be considered practically the same in the mean.

Measured variation had been the least in Northern Hemisphere winter,
greatest in Northern Hemisphere summer during the 1962-66 period shown
in Figure 5. Recent values of this same gradient measured from NIMBUS-III
during 1969-70 fell within the range bars in all seasons and in both
heﬁispheres except during Northern Hemisphere winter. This re-emphasizes
the need for a continuing program of radiation budget measurement so that
we may measure and study the full natural variation of the radiation
gradient.

On the time scale of a specific season, one cannot expect a direct
relation between the radiation gradient measured from satellites and

the resulting atmospheric circulation. Whereas, this would be the case
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on Mars, our oceans and hydrologic cycle provide other inean to release
energy into the atmosphere and often operate out of phése with each other
and with the radiative forcing from space.

Nevertheless, as an illustration of the poténtial equivalent varia-
tions of radiatién gradient Qe’have constructed the simple linear
example shown in Figure 6. Here the mean summer and winter values of
the thermal wind (VT)1 are used with the corresponding mean values ‘of
radiation gradient index (from Figure 5) to derive the 1linear relation.
Mean values of gradient measured over the southern hemisphere are noted
by the arrows, they would indicate a lesser range of the mean Vg in that
hemisphere. Shaded areas denote the range of measured gradient in all
summers and winters and the equivalent range of circulation activity.
Research now underway will study the actual physical and dynamical
relations between the satellite measurement of radiation resulting from
atmospheric conditions and the subsequent circulations forced, in part,
by the radiative energy exchange. The grossly oversimplified illustra-
tion in Figure 6 serves as a reminder that this gpplication of the satel-
lite measurements can proceed in parallel with an increa;ingly polished
description‘of "mean" conditions.,
1V. High Frequency Time and Space Changes in the Earth's Radiation

Budget

This section is included to present the reader with examples of the
radiation budget measurements from satellites on time and space scales
sufficient to considef the local and regional energetics. The higher

frequency data from the scanning radiometer is emphasized. Most results

1 Northern Hemisphere from 20°-70°N between the levels 1000 and 300mb.



are recent ones from NIMBUS-III; they are described in detail in RASCHKE
et al [1972] . ~

Figures 7a, 7b,'and 7c denote time-latitude sections from pole-to-
pole dufing April, 1969 - February 1970. They show the monthly course
of outgoing infrared radiatioﬁ, wL; planetary albedo, A; and net radia-
tion, Qy, in each latitude zone,

Geographical variations of the same radiation measurements are
shown for the period 1-15 July 1969 in the se£ of figures8a, 8b and
8c, Here the high area resolution of the NIMBUS-III experiment can be
used to éxamine radiation patterns characteristic of the tropical
convergence zone, sub-tropical desert regions and special areas of
cloudiness in mid-latitudes during these 15 days.

A final example of the geographical variation of radiation to space
is seen in Figure 9 . Based on measurements from nine seasons with the
low area resolution Wisconsin sensors, we see here the natural range of
the seasonal values of infrared emittance to space. As in the case of
the interannual radiation gradients, more study of theée results is now
in order. Some features, such as the large range of values over the
Indian monsoon sector, can bevinterpreted with little @ifficulty. Ques-
tions are posed, however, by the maxima of range ih the tropical eastern
Pacific and by the minima near the British Isles. The latter might be

due to persistent cirriform cloudiness.

V., Summary

During the 1960's, radiation budget measuremnts from satellites have

allowed quantitative study of the global energetics of our atmosphere-
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ocean system. A continuing program is planned, including independent
measurement of the solar constant. Thus far, the measurements returned
from two basically different types of satellite experiments are in
agreement on the longterm glgbal scales where they are most comparable.
This fact, together with independent estimates of the accuracy of
measurement from each system, shows that we now measure the energy ex-
change between earth and space better than it can be calculated.

Examples of application of the radiation budget data were shown.
They can be related to the age-old problem of climate change, to the
basic question of the thermal forcing of our circulatior systems, and
to the contemporary problems of local area energetics and computer

modeiing of the atmosphere.
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Abstract — Sensors carried on the first and second generation meteorological satellites (TIROS, NIMBUS.

ESSA). during the 1960’s were designed to measure solar energy reflected and scattered by the earth and

it's atmosphere. From many months of data. a global planetary albedo of 30 per cent has been measured.

Only small seasonal variations are detected on the global scale. However. much more solar energy is appar-

ently absorbed in tropical regions than was previously believed. Application of these measurements to the
total radiation agd energy budgets provides a new insight into atmospheric energetics. In addition. the
measurements allow quantitative study of the mean solar energy input at geographical locations. as well as

THE EUROPEAN
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"ARKED P

E

temperal variations from that mean.
Résumé— Des dipositifs installés 3 bord des satellites météorologiques de le et 2e génération (TIROS,

NIMBUS. ESSA) au cours des années 1960 étaient destinés 3 mesurer I'énergie solaire réfléchie et dispersée
par la terre et par son atmosphére. A partir de mesures faites pendant plusieurs mois un albédo planétaire
Iques faibles variations saisonniéres ont pu Stre détectées a I'échelle

global de 30% a été mesuré. Seules que
globale. Cepgndant. bien plus d’énergie solaire est absorbée dans les régions tropicales que I'on imaginait
uuparavan(.pf.’application de ces mesures 3 la radiation totale et aux budgets d’énergie offre un nouvel aspect
de I'énergigAtmosphérique. De plus, les mesures permettent I'étude quantitative de la puissance moyenne de
._,Jﬁagsgie sBlaire dans les régions géographiques et des variations avec le temps de cette moyenne.
Resumen— Los sensores que viajaron en los satélites meteorolégicos de primera y: segunda generacion
(TIROS. NIMBUS. ESSA) durante los afios 1960 estaban destinados a medir la energia solar reflejada y
dispersada por la Tierra y su atmosfera. A partir de los datos correspondientes a muchos meses de investi-
gacion. se ha determinado un albedo planetario global del 30%. Solo se detectan pequefias varfaciones
estacionales en la escala global. Sin embargo. parece ser que la absorcion de energia solar en las Tegiones
tropicales es muche mayor de lo que se creia ser antiguamente. La aplicacion de estas medidas a la radiacion
total y a los presupuestos de energia presenta un nuevo concepto de la energética atmosférica. Ademas. las
medidas permiten el estudio cuantitativo de la admision media de energia solar en lugares geograficos, asi

como variaciones temporales a partir de dicha media.
INTRODUCTION
DURING the 1960’s sensors carried on near-earth satellites provided the first measure-
ments of energy exchange between earth and space. Beginning with the TIROS-type
and extending into the NIMBUS (experimental) and ESSA (operational) series,
radiation budget measurements have allowed study of the basic forcing function that
drives the circulation of our atmosphere and ocean.
The terms of the radiation budget are shown in Fig. 1., and include:
RNE4=I|)(1'O_‘A)'—HL '

With RN the net radiation; [, the incident solar radiation at the “top of the atmosphere”
(derived from knowledge of the solar constant* and astronomical parameters); 4, the

*Colorado State University;
tUniversity of Bochum.

‘$Goddard Space Flight Center. NASA
* A solar consiant of 195 cal. cm~2 min~' is used throughout ‘this paper except when another (2-00) is

explicitly noted.
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Fig. 1. Schematic depiction of terms of the radiation budget of th@nh—atmos- L.
phere system.

planetary albedo (ratio of total solar energy scattered and reflected by the 'atmosphere,
clouds and earth surface, H,, to the incident solar energy, /,); and H, the infrared

. energy emitted by the@rth-atmosphere system. Dimensions are energy per area per

time except albedo, a percentage. The equation may be applied at all time and space
scales. Expansion of the solar energy terms is simply

1,(1-:0—A) =ly—H,=H,,

with H, the amount of solar energy absorbed in the Earth and atmosphere.

This paper includes results of measurements from the first and second generation
satellites during 1962-1966[1] and also preliminary data from the NIMBUS-111
experiment. The latter has been described for Nimbus-11 by Raschke and Bandeen{2].
Together, the two references contain citations of many other papers describing the
satellite experiments and data, too numerous to cite in this article. The. other papers
discuss the detectors (thermistor bolometer), accuracy estimates (2-3 per cent on the
global scale), time and space sampling bias (especially diurnal sampling problems from

. experiments o n-synchronous satellites), ground resolution and smoothing, as well

as data reduction procedures. The period of data used in this paper included 39 months
during the years 1962-1966: then a seasonal sample during 1969 from NIMBUS-IIL.
Some measurements obtained in the late 1960’s have not yet been totally processed
and new experiments are planned for future spacecraft. As will be seen, comparisons
between different experiments show a consistent picture of the large-scale energy
exchange between earth and space. On smaller space and time scales the variability
(as expected) is greater; examples of these measurements are also included in the
present paper. ' ‘

SOLAR ENERGY IN THE RADIATION BUDGETS OF THE ENTIRE PLANET
. AND OF LATITUDE ZONES :

Table 1 depicts the global radiation budget measurements from satellites. The i.r.
term, H,, is followed by the planetary albedo measurement, A4, in parentheses. Annual
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Table 1. Global radiation budget

Satellites NIMBUS-ill

1962-1966 1969-70
MAM 0-325(309) 0-326(29% )
JA 0-335(26%) 0-335(29% ‘A (/)
SON 0-342(28%) 0-329(29%)
DJF 0-333(319%) 0-320(28%%)
Annual  0-336(30%) 0-328(29%¢)
Preliminary

values from the 1962-1966 data set agree well with more recent results from NIM-
BUS-I11. They both show that our planet is: ’

(1) warmer and darker (higher infrared emission and lower albedo) than was
previously estimated; -

(b) in net radiation balance with space (to within measurement accuracy).
A very small seasonal variation in these mean values shows that the earth as a whole is
slightly colder and brighter during the period December-May. Radiation &ffm the
Antarctic region would favor this seasonal effect.

A comparison of mean zonal averages of H,, H,. and A are shown in Fig. 2. Here
we see the classic profile of more energy absorbed than emitted in equatorial regions
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Fig. 2. Mean meridional profiles (averages within latitude zones) of components of
the earth’s radiation budget measured during the period 1962-1966. The abscissa
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and more lost than gained at higher latitudes. Variation in this equator-to-pole gradient of -

net radiation, RN = H,— H,, is of great interest in atmospheric and oceanic energetics.

As known, the measured solar energy absorption varies with latitude more than the
infrared emission. An unexpected result, however, is depicted in Fig. 3, where first
generation satellite measurements and results from NIMBUS-11 are compared with
the earlier, extensive computations by London[3]. Here, we find that the tropical
regions especially have a lower albedo than was previously believed. This being the
region of great insolation, the result shows that the additional energy ,_gmg absorbed
in our global system is primarily being absorbed in the tropics. Von der Haar and
Hanson[4] have further found that most of the extra energy is absorbed in the oceans.

A closer look at two latitude zones of nearly equal surface area is shown in Fig. 4.
The mean net energy gain or loss is displayed by season and for the yearly case Lon-
don’s annual values are 35 per cent less than measured in the 0-10°N zone: about the
same near the poles*. The large differences in one region are compensated by generally
greater measured infrared loss to space throughout the middle latitudes (see Fig. 3).
More energy absorbed in the tropics implies a more vigorous circulation (atmospheric,
oceanic or both) than was previously thought.

GEOGRAPHICAL VARIATION OF THE SOLAR ENERGY REFLECTED TO SPACE
AND ABSORBED IN THE EARTH-ATMOSPHERE SYSTEM

We have seen that satellite measurements of solar energy absorption on global and
planetary scales differ from what was previously believed. Relaxing the space scale
another dimension, we note the mean annual geographical variation of absorption,
H,, in Fig. 5. The magnitude of the absorption is based on a solar constam of 2-00 ly
min~'. Similar maps for the other radiation budget terms are given in Vonlger Haar and
Suomi[1]. Figure 5 shows a smoothed pattern since all daily and seasonal variations of
cloudiness and most surface variations are included in the mean map (in addition, the
low resolution satellite sensors cannot resolve more than 10° square areas). H and L
labels denote relative magnitudes for each latitude zone. The greatest absorption of
solar energy occurs near the mouth of the Amazon river and in the Central Pacific;
the least over the South Pole. Sub-tropics of the southern hemisphere gain slightly more
than the same regions in the north, due both to a lower albedo and to greater mean
insolation. Major atmospheric (the summer monsoon) and surface (Sahara desert)
features can be discerned. Comparison with the climatological maps of Budyko,
Geiger and others will be the subject of future work.

Figure 6 allows study of the geographical scale during a shorter time period and with
a higher resolution sensor. Here the preliminary NIMBUS-111 i.r. data are used to
display a higher frequency pattern of energy (infrared) loss to space. The infraréd and
solar energy maps are complementary in that they contain independent information
and are not mirror images. I.ongitudinal differences in the tropics are striking; see for
example the highly emitting Arabian region and the low i.r. energy from the deep high
cloud systems of the neighboring Indian monsoon. The tropical convergence zones in
the Atlantic and Pacific are apparent. West of Central America a broad band of clouds
are noted by the low infrared measurements.

*Just recently, London and Sasamorl:[S] have performed new calculations which are in much closer
agreement with measurements from satellites.

)
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Fig. 5. Mean annual map of solar energy absorbed by the earth and atmosphere,
1962-1965 (102 cal/cm™2 min~").
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Fig. 7. Minimum daily values of albedo based on preliminary measurements from
the NIMBUS-1II satellite during timg period shown. (1-15 July, 1969)

On the same time scale (15 days) Fig. 7 shows measured minimum values of planet-
ary albedo, A, over a section of the western hemisphere tropics. Minimum (daily)
albedo maps would depict land-ocean differences if cloud cover were completely
random. It is not, and two regions show this on Fig. 7. One, oyer the ocean west of Baja
California, unfdoubtedly denotes the presence of persistent statiform cloud cover. The
other, centered near 10°N, 100°W coincides with the marked minimum on the infrared
map. It must represent persistent high and middle clouds, but the reason that this part
of the convergence zone is so active at this time needs further study. East and north of a
strong gradient of minimum albedo, the Gulf of Mexico and Western Atlantic show
minimum albedo value of 10 per cent or slightly less. Hawaii does the same, indicating
at least one cloud-free day during the 14 considered for the map.

To aid the study of solar energy measurements from satellites, Fig. 8 shows the
relative dispersion of albedo (ratio of standard deviation to the mean) for the same area
and time as Fig. 7. Both the stratus and middle cloud regions mentioned above show
low dispersion, reinforcing our estimate of persistence. Conversely, portions of the
convergence zone in the central Pacific, as well as the Gulf of Mexico and other local
areas have high dispersion. Southwestern United States and Central Mexico have
small relative dispersions in daily albedo for this summer sample. Where possible, the
dispersion maps will be compared with station observations to aid meteorological
interpretation. However, we have demonstrated the complementary value of simul-
taneous infrared and solar energy measurements as well as the added value of special
derivatives from these data. A matched set allows display and study of the energy
exchange with space and its interaction with cloud and surface features.

stratiform



$€.136 P9. Measurements from meteorological satellites

H
500 1500 140° -

Fig. 8. As Fig. 7 for values of Relative Dispersion (%) of Albedo.

Since it is not possible to discuss in detail all the satellite measurements in map form,
Table 2 presents a qualitative summary of seasonal variations of planetary albedo, A
maxima, and minima. Final versions of the maps from which these were extracted will
be published after final orbit processing and data checks. Some entries in the table show
ethe Brazil-Columbia locations). West and northwest
Mexico appear in the minima column during three seasons of 1969-—1970;@:
_ Brazil and India altlemate between the extremes.

a seasonal progression (}

=
=
=

/ .
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(40°N-40°S)

-9 80°

... Measured extremes of planetary albedo over land areas*

/) 700 s

Maxima Minima
April 1969 Central China/Japan South India
South Central Asia Western Mexico
North Brazil/Colombia  East Australia
July 1969 India/Southeast Asia East Mediterranean

October 1969

January 1970

Colombia/Peru
Equatorial Africa
South China
Colombia

Equatorial Africa
Midwest United States
Central Brazil

South Central Asia

Central Brazil
South Africa
Northwest Mexico
Southwest Arabia
Florida

South India

West Africa
Western Mexico

*Excluding major desert regions
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SUMMARY
We have learned a great deal about the energy exchange between our planet and

- space from the Mmeasuremen@acquired from satellite platforms. Atmospheric scientists
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now study the interannual variation of this energy exchange and its role in atmés-
pheric energetics. They also desire to study ocean response to the energy separate from
that of the atmosphere and also the longterm problem of climate change. It is hoped that
this brief paper has demonstrated the high importance of the solar energy terms of the
radiation budget as well as shown that the satellite data can complement the many
ground-based observations for research and engineering studies.
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1.0 INTRODUCTION

Previous estimates of a globélly integréted value of the absorption
of solar energy in the atmbsphere have been made by Gabites (1950),
London (1957) and Sellers (1965). These estimates were in good-agreeQ
ment showing 17-18% absorption by the atmosphere and a global albedo
of 34-36%. However, these estimates were made prior to the acquisition
of reliable satellite measurements of reflected solar radiation.

Vonder Haar (1968),using recent satellite data has shown the earth's
albedo to be close to 30%, a deviation of 4-6% from previous estimates.
Hence, one would suspect an error in previous calcuiations of the absorp-
tivity of the atmosphere or the earth's surface or both.

More recent studies by Vonder Haar and Hanson (1969), Hanson, et. al.
(1967) and Hanson (1972) have concentrated on spatial variations and
dependence of absorption on precipitable water, but only in selected
geographical locations such as the central Pacific and the U.S.

This study is designed to look at only a small part of the heat
and energy budget of the earth atmosphere system in detail. Future
studies may utilize these solar energy results in conjunction with the
pthér components of the radiation and energy balance equafibns.
| -In particular, the purpose of this study is to combine recent satel-
lite measurements of reflected solar radiation from the Medium Resolu-
tion Infrared Radiometer (MRIR) on Nimbus 3 with a global network of
surface albedo and actinometric measurements to determine the spatial
and temporal distribution of atmospheric absorption of solar energy.

In addition, a two parameter model will be established to determine
the felationship between solar radiation absorption in the atmoéphere,

precipitable water and opaque cloud cover.
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Results will serve three purposes:

Energy budget studies may be updated with the aid of the global
value and Qariations of atmospheric absorption found in this
study by using the most recent satellite observations. Whether
solar irrédiance enters the atmospheric energy cycle directly or
latently determines the response time of the atmosphere to the
solar forcing function. For special reasons, results from the
tropical regions will be of interest to the meteorologist and
oceanographer alike since the absorption at the earth's surface
(which is primarily oceanic in tropica1>1atitudes and therefore
a latent energy source) is obtained as a complement to atmos-
pheric absorption. The results of this study may help define
more clearly the role of ocean currents.in transporting energy
poleward to maintain the heat balance of the earth-atmosphere

system.

Absorption over the sparsely populated regions of the world
is unknown because of the lack of an actinometric and surface
observation network. Because of the large data sample and wide
range of locations included in this study, generalization of
the results may hopefully be extended to regions of the world

having poor surface data networks.

Parameterization of solar energy absorption, in terms of parameters

that can be remotely sensed on a global scale by satellites will



allow continuing study of this important process. Furthermore,
the same parameters being available within current numerical

models, allows additional use of the results of this study.

With these goals in mind, sections dealing with the data used will
be followed, first by the diagnostic results, then by the results deal-

ing with the parameterization of solar energy absorption.



2.0 CALCULATION OF SOLAR RADIATION ABSORPTION

Fritz, et. al. (1964) have developed a method of determining solar
absorption in the atmosphere which combines satellite and surface mea-
surements. As illustrated in Fig. 2.0-1, Qo and Qr are the values
of solar irradiance incident and reflected from the top of the atmos-
phere. Likewise, Qg and Qs are values of solar irradiance incident
and reflected from the earth's surface. When combined, these irradiance

terms define the absorption in the atmosphere, Qa , as:

A" ®
dividing equation (1) by Q0 yiélds:

X %,

y TR " i @

oo|4°

surface

\\\\ \\\\\\\\Y

"FIGURE 2.0-1 - Symbols for irradiance bounding
the atmosphere and absorption of radiation in
the atmosphere.



WeAmay now define:

, the fraction of incident sunlight absorbed in the atmosphere,
, the fraction of incident sunlight reflected to space,

, the transmission of the atmosphere,

, the surface albedo,

'{Q
o] e I Lot

9, = qg(l-a), the fraction of incident suhlight absorbed at the surface.

Equation (2) may now be written as:

QR Q Q
" S. 8 __8
q = 1+5>- - & (3)
a 9T q 94
Qs
since 6— = a , equation (3) is equivalent to:
g
g = 1-9,(1-0) -q, (4)
or, rearranging:
1 = q,+q,+q, (5)

which is a statement of the conservation of short wave radiant energy.
Clearly, the sunlight reaching the top of the atmosphere is either
reflected to space by the earth, atmosphere and clouds, absorbed by

the atmopshere or absorbed at the surface.



2.1 Irradiance at the Upper Boundary

The irradiance at the upper boundary of the atmosphere, Q0 , can

be calculated from:
= I (r /r)2 cos ¢ (6)
Q s Un

Is , the solar constant, is 1.95 cal/cm2 min, T and r are the mean
and actual earth-sun distances; and ¢ is the solar zenith angle at

the subsatellite point at the time of observation.

2.2 Reflected Radiation at the Upper Boundary

The outward irradiance at the upper boundary, Qr , was obtained
from Nimbus 3 MRIR measurements of sunlight reflected to space by the
earth, atmoséhere and clouds. Techniques used in reducing the measure-
ments have been‘discussed by Raschke, et. al. (1972). Qr/Qo is known
as the albedo of the earth atmosphere system. Figuré 2.2-1 is an il-
lustration of albedo measurements made by Nimbus 3 from January 21 -

February 3 1970.

2.3 1Irradiance at the Ground

The irradiance at the ground, Qg , was taken from actual obser-
vations of all actinometric stations in the World Metecrological Organi-

zation (WMO) network. This rnetwork represents more than 350 reporting
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stations from over 50 countries. Figure 2.3-1 depicts the ratio of
annual values of Qg estimated by Geiger (1963) to those found by
this study, over randomly selected portions of the globe. Geiger's
values are based in part on measurements of radiation over long periods
of time, and also from relationships of air turbidity, cloudiness and

the height of the sun.

2.4 Irradiance Reflected at the Ground

The irradiance reflected at the ground, QS , was obtained as
the prbduét of irradiance at the ground and the surface albedo. Over
the U.S;, surface albedo was taken from data compiled by Kung, et. al.
(1964). Over the remainder of the globe surface albedo was specified
in reference to Posey and Clapp (1964) and with the aid of Nimbus 3
minimum albedo maps.

The data compiled by Posey and Clapp over the U.S. was consistently
lower than the data obtained by Kung, et. al. (1964) thus prompting a
3% correction factor to be added to the Posey and Clapp albedo values
less than 20%. This was applied world-wide.

The few surface values greater than 20% were more in line with the
data gathered by Kung, et. al. (1964) and Nimbus 3 minimum albedo maps,
hence no corrections were applied to the Poséy and Clapp data for sur-

face albedo above 20%.
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2.5 Accuracy of Measurements

Accuracy of the individual measurements will determine the validity
of the whole study so a careful error analysis must be undertaken.
Raschke, et. al. (1972) have placed the random error of radiance mea-
surements on all MRIR channels at *1-2%. Relative calibration of mea-
surements of the reflected solar radiance were made over cloud free
areas of the deserts of North Africa and Arabia. The results showed
no systematic increase or decrease of reflectances during the entire
life span of.the Nimbus 3 MRIR. Assuming that absolute calibration be-
fore launch was accurate and that there are only small processing er-
rors, we may then place a relative bias error of +5% on values of Qr

Errors in the measurement of surface albedo should not be large.
Kung, et. al. (1964) estimated no more than a 4% absolute error in
their measurements over North America. A similar error would be pro-
bable in the combined data of Posey and Clapp (1964) and the Nimbus 3
minimum albedo maps.

Actinometric measurements pose the largest problem due to the
large number and varying types of instruments in use and the large num-
ber of calibration standards in the WMO network. Hanson, et. al. (1972)
have shown the Eppley pyranometers in the U.S. to be consistently er-
roneous since 1954 by 3.5-10.5% due to initial calibration. These
errors have been corrected and factors for instrument degradation with
time in the U.S. have also been applied in accordance with a study made
by Case (1972), so that the actinometric data used in the U.S. should

show an error of no more than 2%. For other portions of the world,
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Vonder Haar and Hanson (1969) have suggested a relative systematic
error of 3% in well calibrated instruments, but Sellers (1965) has
indicated a relative error no better than 5-10% in certain instruments.

Since:
Q. = Qo ) . (7

where a is the surface albedo. Equation (1) may then be written as:

j o
L}

a T % Qe - : - (8)

When factored, equation (8) is equivalent to:

Q, = Q - Q- -q - (9

By differentiating equation (9) one may obtain values of the maximum

absolute error in Qa
an = on - ng + Qg da + ang - er (10)

where on is assumed to be negligible.

Of more interest to this study is the most probable absolute error
(.6745 ) in Qa . Computatidns have been made for varying absolute
errors in Qg and Qr with a constant error in o , to determine the
most probable error in an . Figures 2.5-1 through Figure 2.5-3 il-

lustrate the graphical solution of the most probable absolute error in

Q,
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During May 1969, Little Rock, Arkansas had a surface albedo = .15,
Qg = 500 1y day-l, Q. = 275 1y day-1 and as calculated from this
study, Qa = 235.6 ly day_l. Maximizing the absolute error in each
‘measurement we obtain da = .05, ng = 25 ly day-1 and er = 13.7 1y
day-l. Then the greatest absolute error in Qa is 67 1y day_1 and the

most probable error is 11.4 1y day-l.
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3.0 CLOUD COVER AND WATER VAPOR AS PARAMETERS

In order to make a realistic assessment of the magnitude and
distribution of solar absorption, éne must determine which para-
meters are of importance. Quinn, et al. (1969) found that in a
test of several different meteorological parameters, the total
opaque cloud cover provided the most reliable estimate of atmospheric
transmission. Opaque clouds have high reflectance and substantial
absorption would be expected within an opaque cloud both because of
the liquid water (or ice) and because multiple scattering may greatly
increase the effective water vapor pathlength.

Yamamoto (1962) has shown that absorptién by water vapor is
predominant in the lower troposphere being an order of magnitude
larger than the carbon dioxide and oxygen absorption. In the upper
troposphere, absorption by carbon dioxide and oxygen becomes more
important but at the same time concentrations of these gases becomes
nearly constant thus providing a poor input into this study which
is concerned with variable atmospheric parameters.

Studies by Cox et al. (1972) have demonstrated that haze
(a concentration of aerosols, which may be dilute solutions of NaCl
or water coatéd dust particles) may absorb solar energy directly or
cause a longer path through the absorbing gaseous constituents by
scattering. However, due to the difficulty in measuring this variable
it was not considered in this study.

It should be clear then why spatial and temporal variations
in opaque cloud cover and water vapor are the primary parameters

needed for development of this solar absorption model.
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3.1 Opaque Cloud Cover Data Availability and Reduction

The magnitude of absorption by clouds is dependent on cloud
depth and density and on the zenith angle of the sun. This presents
a formidable task for a cloud cover parameterization since present
meteorological satellites do not sense clouds three dimensionally.
The best approach to the problem on a global scale with the present
state of the art is to consider opaque cloudiness as related to
thick cloudiness and disregard density (dropsize distribution and
liquid water content). Over the time scales considered here, (semi-
monthly periods) the zenith angle of incident solar energy plays
a lesser rolé in absorption.

Such a cloud study was accomplished using data from ESSA 9 during
the same time period as Nimbus 3. For a detailed description of

this study, see Appendix A.

3.2 Calculation and Distribution of Optical Pathlength

AS mentioned earlier, water vapoi is a major absorber of solar
irradiance particularly in the lower troposphere. The water equivalent
of a column of unit cross sectional area extending from the surface
to the top of the atmosphere is known as precipitable water. Given
any sounding for a station, the precipitable water may be found from
equation (11):

300 mb
w dp (11)

0Q |

sfc
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where g 1is the gravitational acceleration at the earth's surface, w
is the mixing ratio of water vapor and p is the atmospheric pressure.
Note that the integration was only carried out to 300 mb as the amount
of water vapor above 300 mb is negligible.

Since solar irradiance usually enters the atmosphere on a slant

path, we must define the optical pathlength, u* , as:
u* = u . sec ¢ ' (12)

Values of u* (in cm) for the months of April, July and October
1969, and January 1970 (representative of the four seasons), are shown
in Figs. 3.2-1 through 3.2-4. Marked seasonal variations in absolute
magnitude can be seen with maximum values in July and minimum values in
January. Although values of precipitable water are very low in the
winter, values of u* are high due to the large zenith angle during
this season.

" Positioning of the maximum and minimum values of u* is nearly
constant with time, exhibiting minimum values iﬁ the Great Basin and a

general ridging over the Mississippi Valley

3.3 Space and Time Restrictions

Although ESSA 9 vidicon data and surface actinometric values are
available for nearly all days in 1969, the Nimbus 3 data is limited to
specific time periods. Hence the data sample used in the development

portion of this study corresponds to the 10 individual Nimbus 3 15-day
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April 1969

FIGURES 3.2-1 Values of optical pathlength in cm.
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July 1969

FIGURE 3.2-2 Values of optical pathlength in cm.
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October 1969

FIGURE 3.2-3 Values of optical pathlength in cm.
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periods listed in Table 3.4-1. This does not preclude an extension of
the results of this study to other time intervals as one of the primary
goals of this study is to develop a general relationship between atmos-
pheric absorption of solar radiation and the independent variables (pre-

cipitable water and opaque cloud cover).

TABLE 3.4-1

Nimbus 3 Data Availability

15-30 April 1969 1 -15 July 1969
1 -15 May 1969 16-31 July 1969
16-31 May 1969 1 -15 August 1969
1 -15 June 1969 3 _17 October 1969
16-30 June 1969 21 January -

3 February 1970

Mean monfhly soundings are available through the United States Department
of Commerce (1969-70) for all upper air stations in the United States.
Precipitable water as calculated from these mean monthly sounaings is
assumed to represent the 15-day periods also.

| Spatial limitations are imposed by the extent of the world actino-
metric network and by high surface albedo. In regions of high albedo,
the ESSA 9_vidicon cannot distinguish between ﬁackground and cloud cover.
As a result Greenland and the deserts of North Africa and Saudi Arabia
have been deleted from this study as have locations poleward of 58° in
all seasons. In the northern hemipshere winter, snow and ice make a

study of this type impractical north of 42°,
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An areal division of the WMO actinometric network was thought to be
advantageous for this study so that general regression equations for the
world relating 'dr » u* and opaque cloud cover may be compared at
different geographical areas. Accordingly, the globe was divided into
four regions; the U.S. (because all reporting stations use Eppley py-
ranometers), South America (because all reporting stations use Robitzch
bimetallic actinographs), portions of Europe (which use the Robitzch
bimetallic actinograph), and the remaining stations (which use a wide
variety of instruments relative to the sample size). Unfortunately
it was found that Italy, which is part of the European division, re-
ported conéistently low measurements with respect to the other countries
in this division. This prompted application of a correction factor of
15%, which was applied to all Italian reporting stations in all months.

This areal division of the globe is a tenuous one to say the least
since 2 of the 4 division utilize the Robitzch bimetéllic actinograph
which has poor response characteristics and as Sellers (1965) has

pointed out, a relative error no better than 5-10% for the measurement

of .
Qg
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4.0 DISTRIBUTION OF .2 9, > 9, and q_ IN THE TROPICS
-2 g

Previous studies of the absorption, transmission and albedo in the
tropics have been quite general giving results of only a zonal average

of . » 9, s 9 and qg . After a study by V;nder Haar and Hanson
(1969) which demonstrated that the.oceanic portions of the tropics ab-
sorb more energy than previously estimated, it is pertinent to consider
whether a distinction between oceanic and continental regions should be
studied prior to compiling a %onal average of absorption values.

This study is heavily biased with continental stations (60 contin-
ental vs 5.island stations in the region 20°N - 20°S). Thus, a scheme

had to be developed to estimate 9, » 4 and q.. over the oceanic

a
portion of the tropics in order to compare our work with many of the
earlier generalized results.

Using an equation for the radiation balance of the earth's surface

we can write:
R = Qg(l-a) + I+ - 14 (13)

where R is the radiation balance, and I+(I4) is longwave radiation
lost (gained) by the atmosphere. By partitioning land énd ocean sur-

faces in a latitude belt and using the relationship:

e

Q. = Qg(l-a) » - (14)
and the assumption that Io+ = IL+ we may arrive at:

(Rg - Ry = Qo = Qp = Tgh + It (15)
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where the subscripts ¢ , O and L refer to latitude, ocean and
land. A further check on the validity of the assumption that IO# =
IL¢ could be made by comparison with the enérgy balance equation over

the oceanic and continental portions of the tropics. Rearranging:
Qo = Ry = Ry *+ Qg * Ip - I (16)

Fortunately, Budyko (1963) has computed the radiation balanée, R,
- using climatological estimates of cloud cover to determine Qg , and
distinguished between oceanic and continental surfaces in all latitude
belts. Since the albedo of the earth-atmosphere sysfem in the tropics
is lower than previous estimates, we may assume that his values of R
are too low. Equation (16), however, uges the difference (R0 - RL)¢
and hence should still be valid for the purposes of this calculation.
From Budyko's calculations, the tropical values of (RO - RL)T is

4.5 x 10% 1y yrL.

Although Budyko does not explaip why there is a
land-sea difference we may assume that it is due bcth to values of
surface albedo which are much larger over land than ocean, and to any

cloud cover differences. Approximating infrared losses by the Stephan

Boltzman law:
W= oT 17)

where W is radiant emittance, T is tempefature and o a constant

- -10 -
equal to 1.17 X 10 7 ly day 1 K 4, one can compute IO+ - IL+. Using
values of T0 and TL of 300°K and 304°K after Riehl (1954), IO+ -
IL+ was found to be -2.0 X 104 ly yr_l. From this study, QeL was

found to be 13.7 X 107 ly yr—l which gives Q. » *he residual, a

value of 16.2 X 10% 1y yr'!. Then q = (16.2x10%)/(13.7x10%)=1.18.

eO/qeL
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Hence the amoﬁnt of surface absorption over the oceanic portion of the

tropics is calculated to be 18% greater than absorption over the conti-

nental regions. This needs verification, but will be used hereafter.
Vonder Haar (1972), using data from S years of satellite measurements,

places the mean annual oceanic albedo in the tropics at 23% and that

of the land areas at 26%. If this absolute difference of 3% is

subtracted from the continental value of albedo found in this study

(28%), one can arrive at the values given in Table 4.0-1.

TABLE 4.0-1
Continental Oceanic Canton Island1 Wake Island1
Measured (1969) Calculated (1969) (1955-1966) (1955-1966)
a, .25 | .20 .18 .13
qg .47 .55 .61 .60
a, .28 | .25 .21 .27
a, .55 .59 .64 .63

1Calibration and degradation errors have been applied to the original data-
to arrive at the values at these stations.

For purposes of comparison, oceanic measurements made by Vonder Haar
and Hanson (1969) have been included. The results from the oceanic

calculations qualitatively resemble the measurements made by Vonder Haar

and Hanson.

The small tropical island sample size and the large aperiodicity
with which they reported in 1969 precludes a comparison of the calcu-
lated values with the actual tropical oceanic data sample used in this

study.
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The ocean-representative calculations were based on the assumption
that IO+ - IL+ = 0 which deserves a closer look. Longwave counter
radiation in the cloud free case is a function of water vapor content,

which under normal circumstances would be larger over the oceans. If

this were the case, equation (16) would become:

(R, - R + T4 -TI4 -1 4+ 1+ (18)

Qo = Ry = Ry +Q + 1 L 0 L

This would have the effect of lowering Qeo

Swinbank (1963), on the basis of measurements made in Australia and
in the Indian Ocean, concluded that counter radiation can be estimated to
a high degree of accuracy from the surface temperature alone. Since the
continental surface area in the tropics would be warmer than the oceanic
surface a good portion of the day, Qeo would become larger.

When clouds, which are effective back radiators, are taken into ac-
count, we can see that the trade cumuli (predominant over the oceans)
would have the effect of increasing I .+ . Therefore the net effect

0

would be Io+ > IL+ which means that calculations made in this study
for oceanic q, are slightly too high, and for oceanic a, too low.
Previous tropical zonal averages given by London (1957) placed q,
at 34%, q, at 18% and q, ‘at 48%. Assuming the tropics are 80%
oceanic, a weighting scheme may be applied to the results of this study
in order to obtain a "zonal' average which may be compared to London's

values. The weighted zonal values from this study are compared to those

of London in Table 4.0-2.



29

TABLE 4.0-2 Tropical zonal average of a. » q and q,

London Downey

(1957) (1972)
a, .34 .25
a, .18 .21
q, .48 .54

Now we can cléarly see the effect of the additional‘solar energy (9%)
available due to a lower albedo in the tropics. Most ¢f the additional
energy received is realized in a 6% increase of surface absorption.
From Table 4.0-1 it is evident that this increased surface absorption

takes place primarily in the oceanic portion of the tropics.

4.1 Distribution of Q. 9, » and q_ on a Global Scale

The method of partitioning the oceanic and continental regions dis-
cussed in section 4.0 is not applicable on a global scale because of the
Wide variation in land-sea temperature differences poleward of 20°,
Nevertheless, continental comparisons on a global scale may be made with
the continental tropics.

Table 4.1-1 makes a comparison of . s 9 > and q, throughout
the world and tropics. Most striking is the difference in surface ab-
sorption as the tropical continental surface absorption exceeds globally
averaged surface absorption by 3%. The small variation in atmospheric
absorption should also be noted. Values of q, used by London and

Sasamori (1971) are 3% higher than the values found by this study and
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also by Vonder Haar (1968). Results from this study indicate that the

lower global albedo is accounted for by a corresponding increase in q, -

TABLE 4.1-1 Tropical vs. global values of 9. > 9 and q

Y 9 e
Tropics 28 25 47 (Downzy, 1969)
Global 30 26 44  (Downey, 1969) _
Global 33 22 45 (London and Sasamori, 1971)

4.2 Seasonal Variations of q_ , q, and 9

Figure 4.2-1 shdws the march df seasonal variations in albedo and
absorption on a global scale, Most Striking is the inverse relation-
ship between albedo and qé (whiéh will be looked at in detail in
section 5.1).

As expected q, was a maximum in the winter and a minimum in the
. fall. Downey, et. al. (1972), using ESSA 9 brightness data found that
global cloudiness was a minimum in the summer of 1969 and not the fall
as the albedo values indicate. Perhaps the reason lies in the degrada-
tion of the ESSA 9 sensor duriné May, June and July.1969, which would
‘have the effect of decreasing the number of cloudy days during the
summer.

These global seasonal averages mask some of the variations in the
networks comprising the global sample. Figures 4.2-2 and 4.2-3 show

that significant variations in Q. » 9 and q, from the global

a

means do indeed occur. It is felt that these regional variations are

due to space and time variations of cloud cover or water vapor.
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4.3 Distribution of Q. 9, and q, over the U. S.

" Since most studies of solar energy absorption and reflection have
concentrated on the U.S. network, comparisons may be made to determine
any temporal differences.

The results of this study for June 1969 closely resemble those
of Hanson (1971) during June 1966. A minimum in albedo was found by
both studies in the southwest and southeast portions of the U.S. How-
ever, Hanson found a minimum (.34) in the northeastern U.S., while this
study found mihimum values of albedo (.27). There was also a discrepancy
in the Gfeat Lakes region where Hanson found a minimum {.28) and this
study found a high flat gradient (.38). These differences are related
to variations in the synoptic pattern over the country;

Values of q, were similar in the southwest and Gulf of Mexico
where both studies reported maximum values of surface absorption, but
in the Great Lakes area this study found a minimum (.36) while Hanson
found a maximum (.50). These differences were to be expected in light
of the large variance in albedo in this region during the two years.
Most of the pyranometer data used by Hanson was not correctéd for.either
calibration or degradation errors (not available at the time of his
work), hence his values of q, are slightly too high and correspond-
ingly, his values of q, are too low.

Absorption in the atmosphere showed minimum values in the Great
Basin and northern plains with maxima in the southeast and northeast.
In the southwestern coastal area this study found a maxinum in q,
(.36) due to slightly lower q found in this study in this area.

Hanson found a flat gradient with values of q, near .19,
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Hanson, et. al. (1967) did another study over the U. S. with data
from the spring of 1962. A marked similarity exists in the values of
albedo between the 1962 study and the values found in April 1969. High
albedo is present in both studies across the northern tier of states
with a minimum in the southwest.

Atmospheric absorption is a minimum in the dry Great Basin in
both studies and is a maximum in the moist southeast. Absorption at
the surface is at a minimum in the northwest and south central U. S.,

and a maxima is present in the southwest in both studies.

4.4 Solar Heating Rate

. Using the atmospheric absorption results we may obtain an atmos-
pheric heating rate due to absorption of solar irradiance only.
The net heat gain or loss due to absorption of solar energy
1

may be represented as Q_°q, which has units of energy area ! time™l,

Taking the difference in absorption between the top of the atmosphere

A Qo.qa . . -1 -1
and the surface, we get VAR with units of energy area "time
height-l which is equivalent to energy volume ! time ", Multiplying

-1 . AQyray -1 -1
by o {density) yields 5———Zz———- in units of energy time = mass .

The first law of thermodynamics may be written:

dh = cp dT - o dp (13)

where h 1is energy added per unit mass, cp(.240 cal g_1 oK_l) is

specific heat at constant pressure and o is p—l. If an isobaric

process is assumed, o dp = 0 and:
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dh = c_ dT (14)

Dividing equation (14) by dt yields:

d _oodr 1% %% %% (15)
dt =~ Tp dt o AZ
Using the hydrostatic equation:
AP = -pg AZ (16)
where P is pressure, and the conversion:
3 -2
l1mb = 10" dynes cm , 17)
we may say:
sz o= . (18)
107 pg
substituting into equation (15):
A Q.°q
dT
- %_ S g (°c/day) (19)
p API10

An example of the solar heating rate over the U. S. during October 1969
is shown in Figure 4.4-1. For comparison, an average annual tropical
heating rate was computed and found to be 1.08 0C/day compared to an

average annual heating rate over the U. S. of .83 °c/day.
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FIGURE 4.4-1 Solar heating rate over the U.S. during October 1969

in oC/day.
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These heating rates are not actually observed, however, Almost as
fast as the energy is aﬁsorbed, it is either transferved vertically by
longwave radiation and conduction or used to evaporate water so that
the net result isian atmosphere that acts as a radiational sink. As
Gray (1972) has pointed out, the atmosphere cools at the rate of 1.2 °c/
day.

Knollenberg (1972) has shown that a considerable portion of solar
insolation in cloudy regions is used not for sensible heating but for
latent purfoses reéulting from radiational cooling of the cloud layer.
Figure 4.4-2 shows the solar heating rate for October 1969 with latent
effects taken into account. It is assumed for computational purposes
that the clouds in October had a mean temperature of c°c.

Using equation (19), the average heating rate may also be computed
for an oceanic volume. A tropical oceanic layer 100 meters deep would
warm by absorption of solar energy at the rate of .017 oC/day while a
layer 1 cm deep would warm 170 oC/day. This tremendous sensible heat
source is used primarily for evaporation and hence latently heats

the atmosphere.
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th_latent effects over the U.S.

o)

i
during October 1969 in C/day.

FIGURE 4.4-2 Solar heating rate w
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5.0 PARAMETERIZATION SCHEME USING REGRESSION TECHNIQUES

Parameterization of solar radiation absorption was formulated
using a stepwise, least squares, multiple linear regression program
with cloud cover and optical pathlength as independent variables (pre-
dictors) and atmospheric absorption as the dependent variable (pre-
dictand). Albedo (qr) was also used as a predictor but only in the
sense of providing a check on the cloud cover-albedo correlation.

The basic stepwise regression program, a library routine on the
Colorado State University (CSU) CDC 6600 computer, was developed at
U.C.L.A. (Dixon, 1970) and later slightly refined by the Statistical
Laboratory at CSU. This program searches the data to find the best
initial correlation among parameters and initializes the regression
equation. At each succeeding step, a new independent variable, which
makes the greatest reduction in the sum of squares, is added to the
regression equation. Before each step an F test is applied to deter-
mine whether the additional variable is significant to the 95% confi-
dence level, and if it is not, the regression program is terminated.

As each parameter is brought into the eﬁuation an 1 value (known
as the multiple correlation coefficient) is determined. r2 is defined
as the fraction of total variance of q, which is contributed by its
regression on the independent variables. A value of zeroc gives no
correlation between a, and the predictors whereas a value of 1 means
that all the sample points lie exactly on the regression line. Another
statistical measure of confidence given by this program is the stan-
dard error of estimate, S , which is a measure of thz residual scat-

ter about the regression line.



41

5.1 Data Analysis

A statistically valid analysis of the results of the stepwise mul-
tiple linear regression program is dependent on a careful understanding
of the extent and limitations of the data set used. Due to the scarcity
of u* data on a global basis, only albedo and cloud cover are avail-
able as predictors over most of the world. In these regions albedo is
generally brought into the stepwise regression equations first, but

\

this is to be expected from the relationship:

q, = l-gq.-aq, (20)
The fact that q. is generally selected on the initial step of the re-
gression is really insignificant since cloud cover and albedo are so
closely correlated. In fact, the predictor chosen second generally adds
little or nothing to r2 , due to the near equivalence of cloud cover
and Q. - Since satellite measurements of cloud cover are available
during more previous years than measurements of albedc, the equality
of their use in this study is significant for the study of other fime
periods.

Results of the parameterization scheme carried out over the U.S.
network will be important for two reasons:

1} Values of Qg are known to be highly accurate,

2) This is the only network where u* was also com-

piled as an independent variable.

Since this ideal data is available with values of u* included, we wish

to know if u* is the primary variable affecting absorption of solar
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radiation. If this is the case, q, will be a maximum when incoming
solar irradiance "sees'" the entire optical pathlength available. One
may hypothesize that in regions of opaque cloudiness (high qr), the
effect of u* would be minimal and atmopsheric absorption low. Con-
versely, in clear regions (low qr) u* should be the dominant predic-
tor, therefore q, should be high.

Looking only at areas of the U.S. with greater than 25% opaque
cloud cover du?ing the four seasons (sample size 35), albedo was the
best predictor accounting for an r2 of .55. u* was next in impor-
tance but provided an increase of only .04 in r? . Cloud cover
was brought into the regression equation last and accounted for no
increase in r2 .. This was to be expected in light of the relation-
ship between cloud cover and albedo discussed above. Clearly u* had
iittle effect in the cloudy regions of this data set and with q, 2
maximum, q, is a minimum (.23).

In the clear regions (those areas with an albedo of .25 or less)
cloud cover was brought into the regression equation first with an
associated 'rz of .29. This may seem surprising at first because
u* was thought to be correlated best with a, but in this case
study u* and cloud cover were almost equally correlated with a,

u* was brought into the regression equation on the second step,
providing an increase in r2 of .26. Albedo was then brought into
the equation and as expected only slightly raised r2 . Here we can
see that as hypothesized, with q. @ minimum,; q, is a maximum {.296).

We may conclude that u* is an important predictor in the clear

areas of the U.S. because it substantially raised r2 and lowered the
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standard error of estimate from .05 to .04. In cloudy regions the

effect of u* was overshadowed by the influence of cloud cover. The

inverse relationship between q. and q, has been explained in terms

of the importance of u* in clear areas.

5.2 Results of the Parameterization Scheme

Over other regions of the world where there are two predictors of

atmospheric absorption, Q. and cloud cover, three facts become im-

mediately obvious:

1)

2)

3)

Cloud cover and q_ are insignificant as predictors in the tropics.
The maximum value 5f 12 was .33 and for all time periods combined
r2 reached only .11. Outside the tropics, values of r? as high

as .91 have been found, and for all time periods, all stations com-
bined outside of the tropics, r2 reached .28, more than twice

the value found in the tropics. (As noted in section 4.1, the re-

sults apply exclusively to land areas).

The areal division of the world into networks has demonstrated

that the parameterization of solar radiation absorption is a space
problem and not a time problem. Time variations appear to be quite
constant but the spatial differences far outweigh any temporal
variations. The U.S. network produced the highest values of r~ |,
followed closely by the European network. In contrast to these
networks are the tropical and_South American divisions which had
consistently low values of r

One general equation will not effectively describe the parameteri-
zation of atmospheric absorption. When all stations from all time
periods were combined, r2 reached only .22 while S was rather
high at .06. During the individual time periods with all stations
throughout the world combined, r? fared only slightly better.
These results are in line with the wide spatial variations cited
above.
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5.3 Results from the U.S. Network

Table 5.3-1 gives the results of the parameterization in the U.S.,
which was the best of all networks. N is the sample size, P " is the
parameter selected in each step and cc represents cloud cover. Note
the play between the predictors entered as the first parameter into the
stepwise regression. q, was selected 4 times, cloud cover 4 times and
u* twice. u* was significant in April and July but only practically
significant in January and October. Reasons for the wide variation in
importance of u* are not immediately obvious but can be explained with
the use of Table 5.3-2 which gives the correlation matrix for several
time periods. Dﬁring October and January even though u* had a good
positive correlation with Q - 9, had a higher negative correlation
and hence was brought into the regression eguation on *he first step.
Obviously if q. was deleted, u* would be brought into these two
time periods on the first step.

From Table 5.3-1 we see a large increase in r2 between the first
and second step during May 16-31. This would normally not be expected
in light of the discussion in section 5.1, but the correlation matrix
for May 16-31 (Table 5.3-1) explains why fhis anomaly cccurred. The-
oretically and in practice throughout this study, both cloud cover and
q,. demonstrate a negative gorrelation with q, - Clearly the posi-
tive correlation between cloud cover and a, is out of line, making
any parameterization scheme dubious.

August 1-15 was an anomalous time period throughout the globe and
is certainly reflected in the U.S. network. Refergnce can be make to
Table 5.3-2 which gives the correlation matrix for this time period

which shows almost no correlation between the predictors and qa,
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r2 N S P
April 15-30 .26 39 .05 u*
.38 .05 cc
.51 .04 9.
May 1-15 .16 38 .05 cc
.36 .04 .
May 16-31 .15 34 .05 cc
.53 .04 q,
June 1-15 .58 42 .05 qr
.73 .04 cc
June 16-30 .23 44 .05 Qr
42 .04 cc
July 1-15 .23 49 .05 u*
.28 .04 Ar
.49 .04 cc
July 16-31 .15 52 .04 cc
.32 .04 .
August 1-15 .05 49 .05 cc
.14 .05 q,
October 3-17 .40 33 .05 qr
.61 .04 cc
.63 .04 u*
January 21 - .68 35 .05 Ar
October 3 .77 .04 u*
.80 .04 cc
TABLE 5.3-1 STATISTICAL ANALYSIS OF THE REGRESSION PROGRAM

OVER THE U.S. NETWORK
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May 16-31 1969

cc u* q.
1.00 0.00 0.064
1.00 0.00

1.00

August 1-15 1969

cc u* qr
1.00 0.00 0.78
1.00 0.09

1.C0

October 3-17 1969

cc u* qr
1.00 -0.46 0.78
1.00 -0.54

1.00

January 21 - February 3 1970
*

cc u qr
1.00 -0.35 0.85
1.00 -0.57
1.00

0.39
0.00
-0.22
1.00

0.23
0.00
-0.01
1.00

-0.21
0.42
-0.63
1.00

-0.57
0.71
-0.83
1.00

5.3-2 CORRELATION MATRICES FROM MAY 16-31, AUGUST 1-15 AND OCTOBER

3-17, 1969 AND JANUARY 21-FEBRUARY 3, 1970.
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6.0 CONCLUSIONS AND RECOMMENDATIONS

It is well known that the energies driving the atmospheric
circulation against frictional dissipation are produced by a non-
homogeneous spatial distribution of the atmospheric heat sources
and sinks. The primary cause of such a spatially non-homogeneous
heating field in the atmosphere is the net radiative warming in
lower latitudes and the net cooling in the higher latitudes in
the earth-atmosphere system. Therefore knowledge about the distribu-
tion of any one part of the radiation budget in the earth-atmosphere
system will be helpful in determining the entire radiation budget.
This study has concentrated on solar irradiance, an often overlooked
portion of the heat and energy balance of the earth-atmosphere system.

In addition to meteorological and oceanographic applications,
results may also be used by biologists, botanists and agriculturalists
as Gates (1972) has pointed out. Gates found that many plants and
animals have an upper and lower threshold as to the amount of
solar radiation they can absorb. Habitation restrictions would be
imposed if these limits were exceeded in a particular geographic
area.

In line with these applications this study found surface
absorption of solar irradiance was 18% (relative) greater over the
oceanic portion of the tropics than over the continental regions.
This adds significantly to the role of the oceans in maintaining
the heat balance of the earth-atmosphere system. Due to lower
values of tropical albedo, both atmospheric and surface absorption
values are higher than the zonal averages given by London (1957).

Also of interest is the inverse relationship between qa, and q, -
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Results of the parameterization scheme indicate:
1) u* is indeed an important predictor in clear regions.

2) the parameterization of solar radiation absorption is a
3pace problem and not a time problem

3) both cloud cover and q, are insignificant predictors
in the tropics

4) one general equation will not effectively describe the
parameterization of solar radiation absorption

Hanson (1972) reviewed several methods of parameterizing QG :

A) The use of long term mean irradiance provided a reasonable
parameterization scheme only on a time scale of a year.

B) The use of surface observed cloud cover provides a slightly
better parameterization scheme on the shorter time scales.
Hanson estimates that the numerous and differing formulae
for parameterizing Q_ from surface observed cloud cover
are due primarily to fime scale variations.

C) The use of satellite data to parameterize Q_ was tested
on only a monthly time scale but was considegably better
than methods a and b on the same time scale.

One may conclude that indeed the satellite parameterization

scheme on intermediate time scales is the best available. It

would be interesting for future studies to compare parameterization
schemes of surface observed cloud cover with those of satellite
observed cloud cover.

Hanson et al. (1967) and Hanson (1972) have also looked at a

parameterization scheme using q, as the dependent variable and
u* as the dependent variable. The results were encouraging and
demonstrated a logarithmic relationship. This study employed
only a linear regression scheme allowing no transgenerations.

Future studies should take into consideration the logarithmic

parameterization scheme.



49

Other studies of this type could be enhanced by securing
more tropical island and ship data. If the current islénd network
is inadequate then more.actinometric stations should be established.

The parameterization.scheme has definite potential for further
research especially over the U.vS. and Europe; this being the case,
u* data should be secured over Europe and run with 1972 data.

In the near future meteorological satellites will provide
real-time cloud cover, albedo and water vapor profiles. Studies
may then proceed on the meso-scale and synoptic level on a daily

time scale and perhaps enhance short and long term weather forecasting.
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APPENDIX A . i.

ESSA 9 was launched February 26, 1969 by the National Aeronautics
and Space Administarion (NASA} into a nearly circular, sun-synchronous
polar orbit at an average altitude of 910 statute miles above
the earth's surface. The orbit is inclined at 102° (retrograde)
to the equatorial plane with an equatorial crossing cf approximately
1430 L.

The original vidicon data tapes compiled by the National
Environmentzl Satellite Service (NESS) (3 days of data per tape)
were reduced in area resolution duriﬁg processing for economic
reasons. Digitized data from ESSA 9 was resolved each day into two
4096 X 4096 matrices, which present polar stereographic views of
both Northern and Southern hemispheres. A 64 X 64 submatrix of
this full resolution data corresponds to a Numerical Weather Predic-
tion (NWP) grid. Thus, there are 4096 NWP grid squares per hemisphere
The term '"meso-scale'" (often used in the literature) refers to an
8 X 8 submatrix of the NWP grid square and hence has an area 1/64
of an NWP grid. Meso-scale data covers a 512 X 512 square grid
per'hemisphere which has_a resolution that varies from 16 nautical
miies at the equator to 32 nautical miles at the poles. Each meso-
scale grid originally contained 64 data points with integral
values from 0 (darkest) to 14 (brightest), representing a measure
of the brightness of clouds, background, or a composite of both.
The original brightness data with a range 0-14, was reduced at NESS,
into 5 equal classes from 1-5, thus achieving a three fold reduction
in dynamic range prior to processing by CSU. Space reduction was

achieved by combining the frequency distributions of 16 meso-scale



data grid points, thus providing a % NWP grid mesh resolution
(190 km at 60°N) for the present stﬁdy; In a % NWP there are 1024
data points (the population of the new frequency distribution).
Those interested in a description of the tape format of the satellite
data should consult Booth and Taylor (1968) Downey et al. (1972)
discuss in detail the quality of the compressed data tapes.

Miller (1971) converted brightness data té octas of cloud

cover through the simple weighting scheme shown below:

Orig. Bright- Class Contribution Weights
ness Range : to total October-May June-Sept.
cloud amount

0, 1, 2 1 0% 0 0
3, 4, 5 2 25% 2 2.5%
6, 7, 8 3 88% 7 7.5%
9, 10, 11 4 100% 8 8
12, 13, 14 5 100% 8

_*The summer and winter weights were applied according to the hemispheric
season. -
When applied to several years of ESSA data, this weighting
scheme yields reasonable results for total cloud amount. However,
the scheme is not effective for determining opaque cloud cover
because it weights clouds with low albedo (class 2). The values
used in this study to determine opaque cloud cover are listed in

the following table:
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. . 1

Orig. Brightness Class Contribution Weights
Range . to *otal

cloud amount

0,1, 2 1 0% 0
3, 4, 5 2 25% 0
6, 7, & 3 100% 1
9, 10, 11 4 100% 2
12, 13, 14 5 100% 3

1Cloud cover in this study is not determined on an octal, but rather
a percentage basis.

Of the numerous weighting schemes tried, this weighting scheme
displayed the highest correlation between albedo and opaque cloud
cover.

Comparisons of the resultant cloud cover have been made with
minimum albedo maps from Nimbus 3 to determine whether background
noise (surface albedo) will bias the nephanalysis. As it turns
out, with the weighting scheme above, the output yields results only
for an equivalent albedo > 35%. Thus, the only background problem
exists in areas covered with ice and snow and the North African
deserts.

More checks were made to determine the quality of the output
by comparison with Nimbus 3 albedo maps, Miller's weighted output,
actual surface observations over the United States, and actual
cloud photographs. The results were encéuraging and verified the
fact that this weighting scheme gives a satisfactory correlation

between brightness and opaque cloud cover.
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ABSTRACT

Recent measurements of the earth's radiation budget from satellites,
together with extensive atmosphefic energy transport summaries based on
rawinsonde data, allow a new estimate of the.required poleward energy
transport by northern hemisphere oceans for the mean annual case. In
the region of maximum net nortﬁward energy transport (30—35°N), the ocean
transports 47% of the required energy (1.7 x 1022 caloyr'l). At 20°N,
the peak ocean transport accounts for 74% at that latitude; for the re-

gion 0-70°N the ocean contribution averages 40%.

il



Poleward energy transport by ocean currents plays an important role
in climate on earth and has béen a subject of study for many years. Bryan
(1962) provides a synopsis of the estimates based on surface heat budget
studies (Budykq (1958), Albrecht. (1960), Sverdrup (1957)). In addition,
he demonstrates a method for oceanic transport calculations based on hydro-
graphic data as an extension of earlier work by Jung (1952). The inade-
quacies of the fofmer method are shown by Bryan to result primarily from
the fact that the transport is calculated as a small residual of two large
quantities, the net radiation gain of the ocean surface and the net energy
loss (to the atmosphere) due to latent and sensible heat exchange. Un-
fortunately, global avail;bility of hydrographic data is probably not yet
extensive enough to use the second technique for global ocean transport
estimates; an additional difficulty is the ambiguity in tﬂe choice of re-
ference level. |

The present stﬁdy uses a third, indirect approach based entirely up-
on measurements. Satellite data on the net radiation budget of the earth-
étmosphere system (Vonder Haar and Suomi, 1971) are now available over
sufficient time periods (data from the years.1962-1970 are used in this
study) to allow a firm estimate of the "mean annual' energy exchange be-
tween earth and spéce. In addition, rawinsonde data from the MIT General
Circulation Library for the 5-year period May 1958 through April 1963
give a matching data set for which Oort (1971) has calculated the energy
transport in the atmosphere.

The energy balance for a polar cap north of a certéin latitude, ¢°N ,

can be written in the following form (compare Starr, 1951):

3E/at = AT + OT + RF + HF | | | 1 .



JE
where 3%

AT

oT

RF

HF

Other symbols

(4

cy(ey)

rate of change with t1me of the total energy in a polar cap

north of latitude ¢ °N . The important components of the
total energy are the internal energy, potential energy, la-
tent heat and kinetic energy of the atmosphere, ocean and
cryosphere (snow and ice) contained in the polar cap.

atmospherlc energy “flux 1nto polar cap across latitude
¢ °N (area S1)
p(c,T + gz + Lq + c2/2 + p/p) v dx dz
S1
oceanic energy flux into polar cap across latitude ¢°N
(area S2)
p(c&T + gz + c2/2 + p/p) v dx dz
S2-

net radiational flux into polar cap at top of the atmosphere

“(area S3)

Q dx dy
S3
energy flux into polar cap at the surface of the solid earth
(area S4)

Q'dx dy

54

used are:

wind (current) velocity

specific -heat at constant volume in atmosﬁhere (ocean)
acceleration resulting from gravity

heat of condensation

pressure



q = specific humidity

Q = net. flux of radiation at top of atmosphere
Q' = net flux of energy at surface of solid earth
T = température

v = northward component of wind (cﬁrrent)

z = height

p = 'density

For a period of a year the energy storage in the atmosphere-ocean-
cryosphere system (aE/at)1 and the energy exchange with the solid earth
(HF) are probably small compared to the remaining terms on the right-
hand side of (1) and will be negleﬁted. Thus, on a mean annqal basis

we assume an approximate balance of the following form:
AT + OT + RF = 0 _ (2)

From satellite measuréments we have an estimate of the net radia-
tional heating (RF) which under the assumptions used in deriving (2)
must be equal to the net northward energy flow into the polar cap. The
atmospheric measurements supply an e§timate of AT . Therefore the
oceanic transport (OT) can be computed from (2) as a residual. Figure 1
shows the total energy flux from radiation requirements (RF), the atmos-
pheric flux (AT) and the deduced oceanic flux as a function of latitude.
Thg numgrical values are presented in Table 1. Sellers (1965) values for
atmospheric (ATs) and ocganic (OTS) transports based on the most recent surface
energy budget estimates (including Budyko's (1963) estimates) are also tabulated.

1)

Variability in ocean energy storage, presently under study in terms of
temperature anamolies, is not well known but most probably lies within’
the error limits of this study.



The atmospheric energy flux was computed for'S different years.
This enabled us to estimate the error of the 5-year mean value of AT
by calculating the standard deviation of the mean S = U(X)/(N-i)% R
where n =5 . Twice the standard deviation of the mean indicates the
95% confidence limit and we assuﬁe that the instrument plus sampling
error of the atmospheric transport is not larger than this value. Error
estimates aré tabulated in Table 2. From Vonder Haar (1968) and Vonder Haar
and Suomi (1971), error analysis of the satellite measurements showed a
" maximun probable bias error of *0.01 cal-cn 2+min~! in mean annual zonal
values of the net radiation, Q . The cumulative effect of such an error
in the required transport (RF) values derived from the satellite measure-
ments increases equatorward from the beginning poiht.of integration at
¢ = 90°N (Table 2). The law of propagation of independent errors was

used to obtain the estimate of error in the derived ocean transport

2
RF

Between 10-50°N latitude the ocean transports derived in the pre-

1
E.,= (E . + EiT)z . This error is indicated by the snading in Fig. 1.

oT
sent study are significantly greater than those previously derived. In
the region of maximum net northward energy transport by the ocean-atmos-
phere s&stem (SO-SSON), the ocean transports 47% of the required energy

22 cal yr'l). At 20°N, the peak ocean transport accounts for

(1.7 x 10
74% at that latitude; for the region 0-70°N the ocean contribution averages
40%. Both the absolute magnitude of the ocean transport and the relative

role of the oceans significantly exceed earlier estimates.

1The error shown for the tropics and subtropics results primarily from

the cumulative satellite error. It is definitely a worst case estimate
for this region since independent information (Vonder Haar and Suomi
(1971) from measurements, London and Sasamori (1971) from calculations)
show no net energy transport required gcross the equatgr. Thus, our
transport integration could begin at 0  rather than 90 .



The total transport value, RF , derived directly from satellite
measurements is also greater than earlier (pre-satellite) estimates
(Houghton, 1954). Vonder Haar (1968) pointed out that the increased

-required energy transport stemmed primarily‘from a lower albedo in
tropical regions than was estimated before satellite data became avail-
able. Vonder Haar and Hanson (1969) showed that the increased net gain
of energy in the tropics was corroborated by the few available measure-
ments of direct solar energy reaching the tropical ocean surfaces. In
fact, they showed that the extra energy entering the tropical zones was
primarily absorbed in the oceans. Independent checks of the satellite
values (1962-1966) on the annual scale have just recently been possible
using Nimbus 3 radiation budget measuréments during 1969-1970 (Vonder Haar,
et. al. (1972), Raschke, et. al. (1972)). These data, from a totally
different radiometer system, confirm the earlier satellite results of

a lower planetary albedo (0.29 - 0.30), an increased net energy gain

and an increased required transport. In addition, the atmospheric

transport values used in this study are somewhat smaller than earlier values
compiled by Sellers (1965) (see Table 1). Thus, the absolute value of
ocean transport must be greater since the overall requirement is greater

and the atmosphefe transports less.

These new ocean values show that not only the absolute amount, but
also the relative role of the oceans is greater than previously believed.
Théy are shown to transport on the average 40% of the total required.

- Peak net transport values for the ocean (ZOON) apparently exceed the flat
atmospheric maxima between 30-50°N. Location of the ocean peak is the
same as Sellers has shown, but the transport value is more than 50%
larger. 'Noge that the curves indicate the need for a small net north-

ward energy transport across the equator by the oceans.



In recent years large numerical models-have been used to simulate
the circulation of the atmosphere and the ocean. As they pass from the
development phase tﬁey offer great promise for numerical experimentation.
A measure of their representativeness is gained by comparison of their
computed values of basic circulation parameters with the observed values.
Comparison of the fecent values of ocean transport compﬁted in é joint
ocean-atmosphere model run for the annual case (Bryan (1969); Manabe (1969))
shows that the total northern hemisphere transport calculated by the
model is less than the results of this study (but in agreement with pre-
viously accepted values). Furthermore, the latitude of maximum trans-
port by oceans was galculated in the model to be about 38°N, which is
not in agreement with our results or any others. Wetherald and Manabe
(1972) have recently runlanother joint'atmosphere-ocean model in which
seasonal variations of insolation were allowed. Reduced snow cover in
the high latitude summer lessened the annual gradient of net radiation
to space and also the meridional transport of energy by ocean cufrents.
Thus, this recent expefiment caused the ocean value to deviate even
further from our result. At this point it should be mentioned that‘the
models presently used to simulate the combined atmosphere-ocean system
are highly idealized and cannot be expected‘to give very reliable re-
sults for the ocean transport. For example, in the model horizontal
sub-grid scale and vertical mixing strongly affect the oceanic heat
transport. Unfortunately, it is not known what value one should use
for the mixing coefficient.

In summary, the estimates of ocean transport obtained in the pre-
sent study are greater than previously believed; are derived from two

new extensive data sets that have been checked and will be continuously



updated in the years to come; and are timely in view of the renewed
interest in the influence of the ocean on weather and climate. Our
results suggest that air sea interaction in mid-latitudes may be even

more significant than presently acknowledged.
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TABLE 1: POLEWARD ENERGY TRANSPORT IN THE NORTHERN

HEMISPHERE FOR THE MEAN ANNUAL CASE

Lat. rrl) ar?) oT" ar® or 3 or/ee
90°N 0 0 0 0 0 -
80 0.32  0.37 . -0.05 0.25 0 -
70 1.14 1.10 0.04 1.18  0.09 3.5%
60 2.15 2.11 0.04 2.14 0.26 2 %
50 3.10 2.24 0.86 2.82 0.57 28 %
40 3.76 2.20 . 1.56 3.10 0.79 41 %
30 3.88 . 2.03 1.85 2,60 1.15 48 %
20 © 3.49 0.91 2.58 1.34 1.19 74 %
10 2.14 0.72 1.42 0.42 0.81 66 %
EQ 0.33 0.13 0.20 -0.07 -0.16 60 %
10%s -1.54 -1.44 -0.10 -0.66 -1.00 6.5%

(Values x 1022 cal-yr-l; minus indicates net southward transport)

1)The values of RF are slightly different from those reported by
Vonder Haar and Suomi (1971), since the measurements from the 13
seasons of that study have been augmented by 4 more measurement
seasons (see Vonder Haar, 1972).

2)The values of AT are slightly different from those reported earlier
by Oort (1971). The present values represent the mean of 5 years
analyzed separately. In the earlier study the same 5-year data set
was analyzed but as one sample.

S)Values of AT and OT as given by Sellers (1965).
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TABLE 2: PROBABLE ERROR IN MEASUREMENTS AND ESTIMATES OF POLEWARD ENERGY
TRANSPORT IN THE NORTHERN HEMISPHERE FOR THE MEAN ANNUAL CASE
(1022 cal yr'l) '

Lat. , : ERF EAT EOT
90°N ——-- c—— ————
80 +0.02 +0.12 +0.12
70 +0.08 +0.06 +0.10
60 +0.18 £0.10 +0.21
50 +0.32 +0.16 +0.34
40 . +0.48 0.10 +0.49
30 | +0.67 $0.16 +0.68
20 ~ £0.88 +0.08 +0.88
10 ' +1.10 $0.12 : +1.10
EQ 11,33 £0.10 +1.33
10°s $1.56 +0.24 +1.58
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Figure Legend

1. Variation of net energy transport with latitude over the northern
hemisphere. RF , total required energy transport inferred from
satellite meaéurements; AT , measured energy transport by the
atmosphere; OT , ocean enérgy transport derived from the present
study; OTS » ocean energy transport according to Sellers (1965).
Uncertainty in the OT values is denoted by the shading. Minus

values indicate net transport to the south.
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Reprinted from Preprint Volume of the Conference on Atmospheric Radiation,
August 7-9, 1972, Fort Collins, Colorado; published by AMS, Boston, Mass,

NATURAL VARIATION OF THE RADIATION BUDGET

OF THE LARTH-ATMOSPHERE SYSTEM AS MEASURED FROM SATELLITES

Thomas H. Vonder Haar

Colorado State University
Fort Collins, Colorado 80521

1.0 INTRODUCTION

The earth's radiation budget has been a sub-
ject of study and estimation for more than a cen-
tury. Beginning with pjoneering experiments on
the Explorer-7 satellite, a continuing experimen-
tal program has been designed to measure the bud-
get, the energy exchange between earth and space.
The global budget determines climate on earth.
Pole-to-equator gradients of the energy exchange
force the planetary scale circulation of our at-
mosphere and oceans. Local area (geographic scale)
radiation budget measurements allow study of re-
gional energetics and the resulting physical and
biological response.

There was an evident need for the satellite
measurements and they have satisfied many of the
initial scientific goals regarding the mean or
steady-state magnitude of the energy exchange be-
tween earth and space. Vonder Haar (1968) and
Vonder Haar and Suomi (1969, 1971) have reported
on results for the mganoannual and seasonal cases
at space scales > 10 KM“ based on measurements
during five years (1962-1966). They found that
the earth was warmer and darker (planetary albedo
A=30%) than previously thought. Global radiation
balance within measurement accuracy of *3% was
found for the mean annual case and occasionally
even for individual seasons. The tropical regions
were especially noted to have a lower albedo than
believed in pre-satellite days. Additional energy
transport by the atmosphere and/or oceans was ap-
parently required to handle the increased energy
"load'" on our earth-atmosphere system.

Others, including Winston (1967) and Raschke
and Bandeen (1970), discussed short spans of data
(weeks, seasons) from satellite experimenta haging

space resolution at the synoptic scale (10 -10 KM ).

As yet, satellite measurewen&s of radiation bud-
get at the mesoscale (<10 KM“) are not available.

Recently, a new set of radiation budget mea-
surements have been obtained at the synoptic scale
from an experiment on the NIMBUS-3 satellite.
They provide the first data on the annual course
(1969-70) of radiation budgets of synoptic-scale
regions. When averaged over latitude zones and
the entire earth (Vonder Haar, et. al., 1972;
Raschke, et. al., 1972) these NIMBUS-3 data inde-
pendently verify the global and planetary scale
annual radiation budget of Vonder Haar and Suomi
noted above.

Thus, after more than ten years of intermit-
tent experiments: (a) the required information
regarding the mea? annual and seasonal radiation
budget is in hand' and being used by the scienti-
fic community, and (b) a significant set of ac-
curate (5%) measurements of radiation budget at
the regional scale is available.

The purpose of the present study is to use
the same body of data that provided the mean rad-
jation budget results to study the natural time
and space variations from that mean state. With
this effort, it will be possible to move closer
toward an understanding of the interrelation of
the earth's radiation budget and its fluid cir-
culations.

Using measurements acquired during the 17
seasons noted in Table 1, the paper will include:

1. A review of the annual and seasonal, global
and hemisphere, radiation budgets and their ob-
served time-variations.

2. A study of the mean annual radiation budgets
of latitude zones and,

a) the interannual (time variation) of these
parameters,

b) the space variation of the zonal averages
with respect to land vs. ocean.

3. Consideration of the natural variation of rad-
jation budget in the mixed space-time domain at
three "frequency'" modes:

a) "low frequenc;" variations as measured
at the >106KkM? space scale during indi-
vidual seasons (90-day periods),

b) "middle frequency'" variations as measured
at a grid size between 102 and 103 M over
time periods of days and weeks,

c) "hi&h frequency' variations at space scales
<10%KM2 and over time periods of hours.

Of course, most of the radiation budget data avail-
able thus far can only be used for the low frequen-
cy study so it shall be emphasized. Each frequency
mode can be used to examine atmospheric circulation
phenomena in resonance or up or down scale in the
space-time domain. :

1with the important exception that global and zonal
radiation budget data of very high accuracy (1%) and
high precision needed to study climate change has
not been acquired.
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4. Two special applications of satellite radiation
budget measurements conclude the paper:

a) joint use of satellite, balloon and surface
radiation measurements to examine the to-
tal steady-state radiation budget of the
deep tropics,

b) combination of northern hemisphere energy
transport requirements measured by catel-
lites with circulation parameter measure-
ments within the atmosphere to derive the
poleward energy transport required of
northern hemisphere oceans.

TABLE 1: RADIATION BUDGET MEASUREMENTS
USED IN THE PRESENT STUDY

MAM 1962 ' JJA 1965
CJJA 1963 S Oct. 1965

SON 1963 July 1966

DJF 1963/64 Dec. 1966

MAM 1964 April 16-30 1969
JULY 1964 July 16-31 1969
SON 1964 o Oct. 3-17 1969
DJF 1964/65 Jan. 20-through
MAM 1965 Feb. 3 1970

2.0 RADIATION BUDGET PARAMETERS AND SOURCE OF
" SATELLITE DATA : :

On any time or space scale the radiation bud-
get, or net radiation:

QN(A)¢;t) = Hs(ks¢nt) = WS(X1¢:t)
- W (4,0,1) ‘ ()

with 1. the insolation, W. and W the radiant
energy per area and time leaVing the %egion (¢,2)
due to reflected and scattered solar energy and
emitted infrared élongwave) energy, respectively.
Units are cal.cm™“+min” Note that A , the
planetary albedo is W /Hs H, is derived from
a knowledge of the solgr constan%. The value 1.95
cal-cm™2+min~! was used throughout this study.

For the zonal average annual case the product
QN(¢, annual) (a(¢4)) may be integrated from pole
to pole to obtain the required poleward energy
transport of the earth-atmosphere system:
$=90°8

Qy(¢,annual) a(¢) d¢ (2)
$=90°N
is the area of each latitude zone.

RT(4¢,annual) =

where a(¢)

As seen in Table 1, 17 seasons between March
1962 and February, 1970 have radiation budget mea-
surement coverage from satellites. All were U.S,
satellites; those prior to 1966 often termed the
"first generation" meteorological satellites (TIROS-
type), those in more recent years the ''second-
genecration' NIMBUS and ESSA type. Eventually, it
is hoped that additional measurements acquired from
ESSA-type satellites (low resolution sensor data
not yet processed to final form) will expand cover-
age in the period 1967-71.

212

All radiation detectors in the satellite ex-
periments were thermistor bolometers. The sensors

~ and data reduction techniques are described in th

references cited in Sec. 1.0. Accuracy estimates
are 2-3% for the longterm global and zonal averages$
about 5% for the other data sets. As will be noted
further in the text, the severest potential unac-
counted bias may be due to the diurnal variations
of the radiation budget,
where this may be expected to occur, measurements
must be interpreted with care (see the references).

A+ mancranhie lacatinne
At gecgrapnic locaiigns

3.0 TIME VARIATION OF THE GLOBAL AND HEMISPHERIC
RADIATION BUDGETS

Vonder Haar and Suomi (1969) first noted that
the planetary albedo, A , was measured to be
29-30% in contrast with the then accepted value of
35% for the mean annual case., They also found the
same albedo for both the Northern and Southern
Hemispheres. The hemispheres independently, and
the earth as a whole, were also in radiation bal-
ance }o within measurement accuracy (+.01 cal.cm-2
'min”") : :

The mean measured values of 'Q,, presented in
Table 2 are the same (*+.01) as derived by Vonder Haar
and Suomi from 13 seasons. For the first time the
natural variation (17 seasons) of Q, for the to-
tal earth-and for the northern and southern hemis-
pheres is also shown. Of course, the natural varia-
tion of the earth and hemispheres for the annual
case is not yet known, but presumed to be within
‘the noise level of results available thus far.
Precise instruments now under design will fill this
data gap, important for the study of climate changéldy
The annual course of net radiation can be readily é
detected from existing measurement and is seen to
be in phase with the annual variation of insolation
at these largest space scales. Note that while
neither hemisphere has:been observed in radiative
equilibrium over a seasonal period, the entire
globe has been in balance at least once in each
season. In fact, this has been observed for 50%
of all seasons of record with the exception of MAM,
the northern Spring. Why doesn't the global radia-
tion budget have a greater variation with season?

Is such fast response due to features of the earth's
surface or the atmospheric circulation? How do the
two radiation budget components, W.- and W ,
contribute to compensation on a glogal scaley The
observed variations stimulate further study of
these questions.

NATURAL VARIATIONS OF NET RADIATION
OF THE EARTH ATMOSPHERE SYSTEM

SEASONAL
ANNUAL DJF MAM JJA SON
GLOBAL ox{ ) |+02+02]+.01203 | 00+03 |+.01202

[+

N 0+ ( ) |-.09403 | +.05£03 | +105.03 |-041.02
HEMISPHERES =
0+ ( ) | +n+02 |-.03£02|—09+£02 |+061.0
L -
{cal-em=2min~')
TABLE 2



4.0 NATURAL VARIATION OF THE RADIATION BUDGET OF
LATITUDE ZONES

The curve in Figure 1 shows the measured mean
annual net radiation as a function of latitude as
well as the mean budget compiled separately for the
land areas and ocean regions of each zone. Note
that the ocean regions consistently gain more ener-
gy in the tropical one-half of the earth than do
the land areas. Poleward of 30° latitude in both
hemispheres the difference in net radiation between
land and ocean is less striking.

NET RADIATION

1 — ZONAL MEAN h 1°
o s + OCEAN AREAS
e LAND AREAS
L d5
i 1 1 i 2 i i e i i 1 i i 1 i A
90 60 30 tQ 30 €0 %0

*S N
MEAN ANNUAL (1962-1970) FROM |7 SEASONS

FIGURE 1

The abrupt change of radiation gradient over
the Antarctic cap is overemphasized on this figure
since the abcissa is not scaled by the area of each
-one. Nevertheless, satellite observations in the
southern winter and late fall have shown a complete
reversal of gradient that has led to the mean annual
result shown. The effect arises during polar night
when, in the absence of insolation, the relatively
warmer zone of 60-70° emits more energy to.space
than the pole itself, thus placing the Q, minimum
near 70°. A similar occurrence has been measured
over the Arctic, but it is weaker and apparently
masked in the annual summary by the strong direct
gradient at other times of the year. These net rad-
jation gradient reversals need further study con-
cerning their impact on the regional circulation.
For example, since the Antarctic is a region where
the ocean and atmosphere are decoupled, and where
latent heat effects are minimized, one would ex-
pect a very direct relation between radiation gra-
dient and atmospheric circulation. Reversal of the
gradient affects the net atmospheric cooling of the
Antarctic atmosphere. A relative warming (Sasamori,
et. al., 1971) in contrast to subpolar latitudes
would destroy potential energy available for con-
version to drive the atmospheric polar circulation.
The time of establishment, magnitude and persis-
tence of this gradient reversal has been and can
continue to be measured from satellites.

Other aspects of the zonal mean net radiation
curve are similar to those discussed by Vonder Haar
and Suomi (1971). Recently, new calculatjons by
London and Sasamori (1971) show closer agreement
with the satellite measurements than the earlier
work of London (1957).

Figure 2 continues the display of measured
variations of net radiation, in this case inter-
annual variations of the pole-to-equator net rad-
jation gradient expressed as the simple difference
in measured values at equator and pole. For each
hemisphere the horizontal line notes the mean dif-
ference value; dots the seasonal mean range; bars
the observed variation during the 13 seasons pre-
sented by Vonder Haar and Suomi, and; triangles
the values measured during four more seasons from
NIMBUS-3. Except for northern Winter the NIMBUS
values all fall within the natural range observed
previously. The cloud and circulation situation
that gave rise to this apparent anamoly is under
study. Furthermore, did the stronger gradient
give rise to increased poleward energy transport
in Janaury 19707 or in subsequent months? Again,
measurement and study of variations of the radia-
tion-budget give rise to questions that would
never be noticed in a study confined only to mean
values.
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As noted in Sec. 2.0, the net radiation changes
depend on the variation in planetary albedo and
emitted longwave radiation. Mean annual profiles
for latitude zones and for ocean and land areas
are shown in Figure 3. We see here that the in-
creased net radiation gain over ocean regions re-
sults primarily from the albedo being lower than
the zonal average. This space variation of land
vs. ocean zonal albedo is portrayed in more detail
in Figure 4 where mean seasonal profiles are shown.
Note that the greater albedo over land areas has a
strong north-south excursion in phase with the mag-
nitude of insolation. Thus, apparently land heat-
ing effects play a significant role in the albedo,
and, thence, net radiation budgets of tropical
regions, a role that may be out of proportion to
the relative area they occupy.



MEAN ANNUAL (1962-1970) FROM 17 SEASONS

Y v v
el 404
.
eof ¥ - {o3
. R z
" . g
gso-*/‘ A - ZONAL MEAN rwsom . '02§=
. _ JONAL MEAN (LONGWAVE RADIATION) n %
. OCEAN AREAS ,

2 . * LAND AREAS . ¥e
540' LY s gv
. &

- : . -~ §
3or ‘A . * .4
\‘, L] .__. ._
Ay -k 8 a
20t
i L 3 I A n i " A A i i i
1095 0 30 ) 30 0 %
o5 *N
FIGURE 3

PLANETARY ALBEDO

20 10 EQ 10 20 30 40 40 30 20 10 EOIO%OSOAO

40 30 2
S LATITUDE LATITUDE
— ZONAL MEAN
a OCEAN AREAS
o LAND AREAS
FIGURE 4

Time variation of the zonal albedo and longwave
radiation profiles was studied by computing the
relative dispersion of the parameters in each zone
based on the 17 seasons of measurement”. Figure

5 displays the input data for the study of time
variations of W, in the form of a time-latitude
section. Such a section also shows the annual cy-
cle of infrared radiation to space and interannual
variation within latitude zones.

The relative dispersion is the standard devia-
tion divided by the mean(the annual values of
Figure 3). Longwave radiation to space was re-
markably invariant. Relative dispersions of W

1poleward of 60° latitude no relative dispersion
were calculated because the samples were too small.
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FIGURE 5

ranged from 6% at 30%°s to 12% in the zone 40-60°N.
The average value over 85% of the earth area was
less than 10%. Do the oceans provide the stabili-
zation of outgoing longwave radiation? Does the
formation of cloud compensate for land surface
heating? In contrast to W , relative dispersion
of albedo is always greater in each latitude zone.
The quasi-global average is about 25%, and values
of 25-30% dominate from 20°S to 60°N, the region
of most global land mass. Minimum relative dis-
persion for zonal albedo is 16% at 40-50°s.

This first study of the natural variation of
the zonal radiation budget of the earth has indi-
cated that land areas, both near the south pole
and in the tropics, play a significant role in
variations of radiation budget that affect the
planetary scale circulation. Whether the land
masses themselves or the cloud systems' influence
(including monsoons), play the major role as per-
turbation mechanisms is the subject of continued
study.

5.0 NATURAL VARIATION OF THE EARTH'S RADIATION
BUDGET IN DISTINCT FREQUENCY MODES

Before proceeding with the use of measure-
ments from satellites to study the time and space
variation of the radiation budget, it is useful
to recall that the physical processes and observed
conditions within our earth-atmosphere system can
be orderly classed in certain frequency modes of
the mixed space-time domain. For example, in
Table 2, the as yet unmeasured variation of the
global annual radiation budget would appropriately
be termed the study of very low frequency (VLF)
variations.

Rigorous scale analysis is not the purpose
of this paper, but the satellite observations on
hand and those to be acquired in the near future
are conducive to the arbitrary assignment by scale
to the following frequency modes:

1. The LF region to be studied at the planetary
scale with measurements available at a grid mesh
of 103 x 103 km and at a seasonal (90-day) time
base.

2. MF or synoptic scale region that requires a
grid size approaching 102 x 102 km and a time set
of daily observations.



3. The "'HF mode that -allows investigation of the
mesoscale (<104 km2) radiation budget on an intra-
daily or hourly basis. :

In any of the modes, the radiation budget parameter,
X , can be expressed in terms of its time and long-
‘itude (space) variations using the notation of
Reiter (1969):

X = [0 Ty (T o]

M, (3)

Brackets refer to the average value of a parameter,
parentheses to the departure from the average and
the subscripts in parentheses indicate the ordin-
ates (time or longitude) along which the averages
or departures are computed.

5.1. Study of the Planetary Scale, Low Frequency
! Mode Variation of the Earth's Radiation

Budget

. Objectively analysed base maps of net radiation
Q.. (A,¢,annual) and planetary albedo (),¢,annual)
aTe given in Figures 6a and 6b. We wish to study
the LF ® variations about these mean cases. The
annual maps have been discussed by Vonder Haar and
Suomi (1971). Kondratyev and Dyachenko (1971}
have compared these maps with others that had been
scalculated using climatological data, They found
moderately good agreement between the relative rad-
iation budget patterns and noted the systematic
differences discussed earlier in this paper. Note
the relative minima of net radiation over the Sahara
(here an actual net loss occurs), the Australian
sector, northeast China and the South American re-
gion. The greatest net gain of energy occurs west
of Malaya. The zonality of albedo pattern is inter-
rupted by the Eurasia and North American continents
at midlatitudes, but shows increase of albedo pole-
ward:' However, equatorward of 30° latitude relative
high values of albedo are found over western South
America, Libya, the Congo, southeast Asia and east-
ern New Guinea. Low values occur for this mean an-
nual case over the central Atlantic and Pacific and
"northwest of Australia. - -
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Use of equation (3) to examine the natural
LF variation of radiation budget parameters shows
that four terms should be studied:

a) the mean annual zonal values (discussed in
sec. 4, Figures 1 and 3),

b) the time variations (relative dispersion)
about the zonal means (sec. 4 and Figures 2,
4 and 5), ’

¢) the longterm mean value of departure of the
radiation budget at a grid point from the zomal.
average, and :

d) the time variation of the departure of the
grid point value from the zonal average.
The latter two parameters, [(X) A‘] . and’
x) A.t) are discussed in the rémAi&E;r of this
secélbn concerning the LF variations.

Figure 7 presents the deviation of net radia-
tion values from the zonal average using the 17
season data set to remove situations peculiar to
only one year. The map presents the location of
significant deviations far better than the mean
annual map (Fig. 6a). For example, the extent of
the South American minimum, masked previously by
the general north-south variation of net radiation,
is now evident and extensive. The maximum gain
area of the Bay of Bengal is highlighted, as are
equally great deviations in the subtropical North
Atlantic. The Libyan minima is seen to extend to
the east and west. -

The magnitude of intrazonal net radiation ygra-
dient is as strong in some sectors as the more
well-known north-south gradient. Just as the latter
forces poleward energy transport, .intrazonal (east-
‘west) circulations that might arise, for example,
in the tropics and subtropics of 60°W to 90°E should
be the subject of study, perhaps with the aid of
numerical models.

As a prelude to discussion of the space and
time perturbation term, the following paragraph
shows the spatial distribution of time variation
of radiation budget, (X)(t) .
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Planetary albedo was noted to have a very high
mean relative dispersion for the latitude zones
60ON-200S. Figure 8 shows the locations of the
most pronounced variability. For the entire quasi-
globe (#60°) the greatest variation is found cen-
teréd at 5°S, 1109W.: This is the site where the
"double-ITCZ" has been observed on satellite pho-
tographs. Great relative dispersion is also found
over the Amazon basin, where a well-known rain/dry
season markedly changes the cioud pattern. Aside
from the entire belt of low albedo variation in
the southern hemisphere, the region of Tibet and
the North Atlantic do not change albedo appreciably
from season to ‘season.

PLANETARY ALBEDO
RELATIVE DISPERSION OF 17 SEASONAL MEANS 1962-70

e
~ PR, <. 2
’

[
e

ot
v

oo &
+

E £ .‘._,_.‘ﬂ."'""
FPTTY FUTTTY PYOUTY FPPITIITUTTI PUTNNY Fyvve

Eun.l“u.lnn.l.nul.uu‘

330 360

-8, B

2 2

60

%%2f> 0.30

98 120 'S0 180 210 240

STGRELS £AST LGNGO TUDE

270 300

20

FIGURE 8

.earth's surface.
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Deviation of relative dispersion of the long-
wave radiation from the zonal mean is seen in Fig.
9. A striking example of greater than average var-
jation occurs in the band extending from southern
Russia, across the summer monsoon region towards
New Guinea and ending north of New Zealand. Re-
gions of lower than average variability of outgoing
longwave radiation are prevalent in the subtropics
of the western hemisphere. Use of these measured
natural variations to highlight anomalous regions
will allow study of the radiation physics and cir-
culations situations that cause them.
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Satellite observations have been used above
to examplify all aspects of the space and time .
variation of the earth's radiation budget in the
low frequency mode.

5.2 Natural Vafiations of Radiation Budget at the
Middle Frequency Mode (Synoptic Scale)

As noted in the Introduction, a much smaller
amount of radiation budget measurements are avail-
able to study the MF mode of natural varia-
tion. Most of this data was obtained from the
NIMBUS-3 ‘radiation budget experiment. From sun-
synchronous orbit, it was possible to obtain radia-
tion measurements twice each day over most of the
When gathered into 15-day, semi-
monthly data sets they may be used to study the
synoptic scale radiaEion budﬁet as seeE'in Figﬁres
10a and 10b. Here [(W;) and [(Q,)
from 1-15 July 1969 areLsﬂéanSt)As expectgdsx) ()
longwave radiation from the Sahara region exceeds
the zonal mean and contributes to the negative anom-
oly of net radiation at the same time. Less than
average W 1is noted at 15°N, west of Central
America, marking persistent high and middle clouds
during the 15 days. For net radiation, less than
zonal average values are found over the stratus
southwest of California and near the coast of south1
west Africa over the convective cloud region of
Columbia. The Gulf of Mexico gains more energy than
the norm during these fifteen days.
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Many additional studies of the radiation bud-
get variation at the MF mode can aid the study
of atmospheric energetics on the regional scale.

5.3. High Frequency Variation of Radiation Budget
at the Mesoscale

Although some NIMBUS-3 data have been used over
the BOMEX array, their time sampling is poor and
space resolution too coarse to allow true mesoscale
radiation budget studies. Some improvement in space
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scale will be possible using the scanning radiometer
data obtained from experiments on the operational
meteorological satellites. However, it will remain
for the high resolution geosynchronous satellite
measurements (in both short and longwave channels)
to allow study of the HF mode of natural varla-
tion of radiation budget.

Geosynchronous satellite data will provide high
frequency measurements of the diurnal variation of
energy exchange with space that affects atmospheric
processes and thermal forcing at the surface of the .



earth.

Some preliminary results regarding the nat-

ural diurnal variation of radiation budget were ob-
tained years ago from a composite of TIR0S-4 satel-

lite data during MAM, 1962.

Figure 11 shows the

results which indicate a semi-diurnal variation of

radiation budget parameters over the total area
latitude.

50
The primary maximum (minimum) of albedo

(longwave radiation) occurs at 1500-1700 local time.

A secondary minimum of W,
dawn.
discussed cloudiness maxima over the oceans?

may be seen just before
Could this represent the effect of the often
Verti-

cal bars note the daytime nodal crossing times of

second generation meteorological satellites.

These

preliminary results of diurnal variation show that
NIMBUS data may be more free of temporal sampling

bias.
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Figure 12 shows that the diurnal variation of

radiation budget is greatest in subtropical latitudes.

These results and further studies of the high

frequency, mesoscale variations of radiation budget
will be greatly aided by measurements from geosyn-

chronous-satellites.

Many local scale atmospheric

processes can then be examined.

IR RADIATION LOSS
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Al ]
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FIGURE 12

- 6.0 SPECIAL APPLICATION OF RADIATION BUDGET
MEASUREMENTS

6.1 Total Radiation Budget of the Zone 0-20°N

A great deal of study is presently being dir-
ected toward the energetics of the tropics and their
inter-relation with midlatitude circulation. The

218

GARP Atlantic Tropical Experiment (GATE), the Cen-

‘tral African Project (CAP) and other major efforts

are directed toward the study of these regions. It
is appropriate to update our information on the
steady state radiation exchange in this area, both
as a background for other work and with the reali-
zation that certain radiation processes may play .

key roles in the energetics of the tropics.

As noted in section 2.0, the satellite measure-
ments have shown that the tropics are warmer and
darker than previously believed (until 1968). With
this lower planetary albedo in mind, Vonder Haar
and Hanson (1969) used the few available measure-
ments of solar energy reaching the earth's surface
in the tropics to find that most of the additional
solar energy entering the earth-atmoshpere system
was being absorbed in the tropical oceans.

Figure 13 contrasts the newly compiled radia-
tion budgets of the surface, the atmosphere, and
the earth-plus atmosphere based on measurements,
with the calculated values generally accepted in
pre-satellite years.. In addition to the complete
solar energy portion of the budget noted above,
measurements of the net infrared cooling of the
tropical atmosphere reported by Cox (1971) were
used with the satellite measurements of W, to
complete the IR budget. The greater net cOoling
of the atmosphere contrasts with the increased
net energy gain of the surface. Aside from sensi-
ble heat exchange at the interface, the major re-
maining term in the local energetics of the atmos-
pherée is warming resulting from cumulus convection.
Here, radiation budget considerations have led us
to one of the central issues of present-day atmos-
pheric science. The mechanism for convective ini-
tiation, mode of energy addition to the tropical

atmosphere and theé method of conversion and trans- '

port of energy to poleward latitudes is bounded and

shaped by the energy available via the radiation
budget. Can further study of the variation of radia-
tion budget assist the present day effort to improve
our understanding of tropical circulation? Yes,
much will be gained from the satellite measurements.
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6.2 Energy Transport Requirements for Northern
Hemispheric Oceans

As shown by equation (2) the total net pole-
ward energy transport for the mean annual case
can be determined solely from satellite measure-
ments. Since it was found that more energy had
to be transported than previously assumed, it was
natural to investigate the possible mechanisms.
In addition, Vonder Haar and Hanson had shown that
the bulk of the increased solar energy absorption
occurred im the oceans.

With the aid of 20 seasons of measurements
carefully compiled from the northern hemisphere
rawinsonde network, Oort (1971) has been able to
independently measure the net poleward energy trans-
port (all forms) by the atmosphere. Figure 14
shows the required total energy transport RT ,
and the measured mean annual atmospheric trans-
port, AT The difference between these values
at each latitude zone yields am estimate of the
ocean energy transport, OT This value, OT ,
cannot be measured directly, nor calculated with-
out stringent assumptions.

The curve AF is a contemporary estimate of
ocean energy transport from Sellers (1965). The
new value, OT , derived with the aid of satel-
lite data has nearly the same latitude variation
as the old curve. However, the magnitude of ocean
transport in the northern hemisphere has been ap-
parently underestimated. The ocean transport
reaches a maximum at 20°N with a value that
equals the maximum atmospheric transport by waves
at mid-latitudes. Overall, about 40% of the pole-
ward transport of energy can now be attributed to
the ocean. Vonder Haar and Oort (1972) discuss
this topic in more detail.

FIGURE 14

SUMMARY

This paper has shown that satellite measure-
‘ments of the natural variation of radiation bud-
get offer many opportunities for scientific in-
quiry. Data available at the present time (17
seasons) have been used to thoroughly examine the
low frequency mode (planetary scale) of variation
in the mixed space-time domain. Examples and
discussion have included the important aspects
of variation at three other modes: very low
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1.0 INTRODUCTION

Measurements from radiation sensors on earfh orbiting satellites
have allowed a study of the spatial distribution and thé temporal varia-
tions in the radiative characteristics of the earth-atmosphere system.
This information is fundamental to gaining a better understanding of
the energy input to our oceanic and atmospheric circulation.

The net radiation budget (RN) is defined as the total incoming
solar energy minus the sum of the outgoing scattered, reflected, and
emitted energies which are measured at the top of the atmosphere.

The purpose of this report is to investigate the interannual
variations in the north-to-south net radiation budget distribution
and the relationship of these variations to the general circulation
of the atmosphere.

The north—fo—south net radiation budget distribution can be
represented to a first approximation by the net radiation gradient (ARN),
i.e., the north-to-south difference in the net radiation budget.

Vonder Haar and Suomi (1969) first discussed the pole-to-equator

ARN as a simple measure of the radiative forcing on the global circula-
tion. The magnitude of ARN reflected the seasonal north-to-south
migration 6f the sun's path on the earth but, more important were

the interannuai differences in the seasonal values of ARN (Vonder Haar
and Suomi, 1971). These differences are most probably indirectly
related to the year-to-year variations in the strength of the general
circulation of the atmosphere through complex energy exchange
mechanisms. This study is an attempt to detect related changes in the
general circulation and to gain a better understanding of the feedback

mechanisms.



The procedure will be to compute monthly values of ARN and
then to compare them with general circulation parameters. Parameteriza-
tion of the atmosphere has been accomplished to some degree by computing

the zonal index, the thermal wind, and the potential and kinetic energies.



2.0 RADIATION DATA ANALYSIS

2.1 Available Data

The radiation data used in this study comprise the most complete °
set of reduced data available to data from radiation experiments on
earth orbiting satellites, excluding only data which does not include
both albedo and infrared measurements. The data are for 36 months
and 5 additional seasons which together intermittently span 10 years
from 1962 to 1971 (Table 1).

Discussion on the data reduction can be found in the following
references: TIROS 4, TIROS 7, EXPERIMENTAL (Vonder Haar, 1968),

Nimbus 2 (Raschke, 1968; Raschke and Bandeen, 1970), ESSA 3 preliminary
results (MacDonald, 1969), Nimbus 3 (Raschke, et al., 1972), ITOS 1
preliminary results (Smith, 1972), and ESSA 7 (MacDonald, 1970 and
1972). |

Data from 1962 through 1965 are the same as that used by Vonder Haar
(1968) except for an adjustment in the solar constant from 2.00 cal cm_2
min.l to 1.95 cal cm_2 min_1 (the solar constant used throughout this
study). Half of the data (17 continuous months) are from the Wisconsin
iow resolution plate sensors flown on an experimental satellite. The
remainder of the data were collected by the following sensors: medium
resolution scanning radiometers on TIORS 7, Nimbus 2, and Nimbus 3;
Wisconsin lbw resolution hemisphers on TIROS 4, and Wisconsin flat
plate radiometers on ESSA 3, ESSA 7, and ITOS 1.

Five seasonal sets of data from the TIROS satellites were included

to extend the data set back to 1962. Large gaps in the longitudinal



TABLE 1: Available radiation data: TIROS 4 (T4), TIROS 7 (T7), Ex-
perimental (EX), Nimbus 2 (N2), Nimbus 3 (N3), ESSA 3 (E3),
ESSA 7 (E7) and ITOS 1 (I1).
Year

Months 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 No.
J EX E7 N3 3
F EX E7 2
M EX E7 2
A EX N3,E7 2
M EX N2 N3 11 4
J EX N2 N3 3
J EX EX N2 N3 4
A EX  EX N3 3
S EX  EX ' 2
0 EX EX E7 N3 4
N EX  EX | E7 3
D EX E3 E7 3

Seasons

DJF T7 EX E3 E7 N3

MAM T4 T7 EX E7,N3

JIA T7 EX EX N2 "~ N3

SON T7 EX EX E7 N3

NOTE:

The DJF season is assigned the year of the respective December.



average limited the temporal resoclution to seasons for complete

longitudinal coverage.

2.2 Net Radiation Gradient

The net radiation gradient (ARN) is the north-to-south difference

in the zonally averaged (latitudinal average) net radiation budget.

The net radiation budget (RN) at the top of a column extending

from the surface

precisely as:

Z

whére:

RL =

Each term of Eq.

to the top of the atmosphere (30 km) is defined

I, (1 -A) -RL (1)

the solar irradiance on the top of the column de-
termined by the solar constant 1.95 cal cm™ min~

the albedo - the ratio of outgoing scattered and
reflected solar flux at the top of the column to
Io’ :

the outgoing longwave radiation (emitted radiation)
at the top of the column.

(1) is a function of both space and time.

The net radiation gradient was taken between latitudes 5° and

65° for the monthly data:

= RN, - RN | (2)

= RN. - RN (3)



2.2a Procedure

Data prior to 1966 were gridded every 10° 1atitude and 10° longitude
from 85° north latitude to 85° south latitude. The higher resolution
data after 1965 were averaged to obtain the same gridding. Net
radiation was computed at each grid point using the albedo, long-
wave radiation, and solar insolation components. The net radiation
gradient was computed from the zonally averaged net radiation budget
for each data set.

Equation (2) was used to compute the net radiation gradient from
the monthly data sets. The equatorward limit was selected at 5 degrees
rather than the equator since it required no interpolation on the
basic grid; interpolation at the equator would have required averaging
over the zone 5°N to SOS, where intertropical convergence zone migrates
north and south during the course of a year.

The poleward limit was set at 65° rather than 85° because of the
data coverage; ten monthly data sets had no data at 85°N, however,
only four data sets had missing data at 65°N. Of these four sets,
three had data both north and south of 65°N (October 1964, October 1965,
and February 1965). The net radiation at 65°N could not be evaluated
directly on these three occasions because the reflected energy was
near the noise level of the signal. These three points were therefore,
indirectly evaluated by interpolation using meridional profiles of
the same months for other years. The zonally averaged net radiation
65°N for the fourth data set (September 1964) was extrapolated using
the meridional profile for September 1965. Similarly, for the gradient
in the southern hemisphere, three August values were interpolated and

June 1966 value was extrapolated to 65°s.



Equation (3) was used to compute the net radiatioﬁ gradient for
the seasonal data. Since the TIROS data did not extend poleward
of 55°N and 55°s latitu&e, the gradient was taken across the 55° to
5° latitude band. In addition, all monthly data were averaged into

seasons so that a gradient comparison could be made.

2.2b Gradient Analysis

Monthly net radiation gradients (ARN) are presented in Figures 1
and 2 for the northernland southern hemispheres, respectively. The
continuous solid curve traces the monthly mean gradient to show the
‘intermonthly change in the gradient. The vertical lines with the hori-
zontal bars followed by the year show the interannual variation in the
monthly gradients. . The continuous dashed curve traces the monthly
gradient of incoming solar insolation (AIO) takep over the same latitude
belt. (Note that the scale of AIO - to the right of the graph - is
different than the scale of ARN).

The net radiation gradient declines less rapidly from spring to
summer than it rises from summer to fall - apparent in both hemispheres.
This is attributed to higher surface and atmospheric temperatures
during fall in the poleward latitudes. Smaller longwave radiative
loss in the poleward latitudes and smaller net radiative gain near
the equator at winter solstice appears in both hemispheres as a
sharp drop in the gradient - December in the northern and June in
the southern. The rise from December to January in the northern
hemispheres is probably due to the large gradient in the January 1970
Nimbus 3 data which was not available in December 1969, and is thus

a consequence of the data set.
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Seasonal gradients appear in Figures 3 and 4 for the northern and
southern hemispheres, respectively. A striking feature is the extremely
sharp rise from summer to fall as compared to the moderate decline
from spring to summer. This feature results primarily from the way
the seasons are defined; the solstices and equinoxes do not fall in
the center of the seasons but near the end of the first month in each
season. Had the seasons been so defined to be centered on the equinoxes
and solstices, then the profiles would have been near symmetrical
except for a slight assymmetry as noted in the monthly profiles.

In both hemispheres the net radiation gradient is in phase with
the gradient of solar insolation on both monthly and seasonal time
scales. This does not exclude a phase shift for time scales less
than a month. In addition, quite large year-to-year variations exist
in the monthly and seasonal net radiation gradient - the primary
concern of this study.

The raﬁge in the interannual variations in ARN and in RN
at gra&ient latitudes are shown in Table 2. The range in the monthly
RN variations is larger at 65N than at 5N latitudes and larger at
55 than at 65S latitudes. On the whole, the range is less at 65S than
at 65N and less at SN than at 5S. These relationships become most
apparént by considering the average range for each which is also shown
in the table. Therefore, the net radiation gradient is affected most
by variations in net radiation at 65N for the northern hemisphere and
at 5S for the southern hemisphere.

The next sfep is to establish through an error analysis that

such variations in both ARN and RN are real and not data error.
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TABLE 2: Measured range of interannual variations in zonally %veraged
monthly net radiation at gradient latitudes (cal cm™“ min™*).
(see TABLE 1 for sample size).

Northern Hemipshere Southern Hemisphere
Months 5N 65N ORN; 58 65S ARNS_65
JAN .03 .05 .06 .04 .06 .04
FEB .02 .04 .02 .02 .01 .01
MAR .03 .06 .02 .04 .04 .00
APR .03 .10 .08 .06 .03 .03
MAY .08 .10 .03 .09 .08 .06
JUN .05 .04 .01 .05 .04 .02
JUL ' .04 .06 .06 .05 .06 .05
AUG .05 .04 .04 .05 .05 .07
SEP .02 .05 .07 .04 .03 .07
oCcT .02 .04 .05 .03 .05 .06
NOV .02 .05 .06 .02 .01 .03
DEC .03 .05 .03 - .07 .00 .06

AVG .035 .057 .044 .047 .038 .042
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2.3 Error Analysis

The type of error which can occur in data measurement and reduction

are bias and random errors.

2.3a‘ Bias Error

Vonder Haar (1968) thoroughly discussed the bias errors in the
data prior to 1966. He established a most probable absolute error of
+1.0 percent and +0.01 cal (:m-2 min—1 in the albedo and longwave
components, respectively. (These are equivalent to relative error
of 3 to 5 percent.)

The total relative bias error in the same components from the
Nimbus 3 satellite has been estimated to be near 5 percent (Raschke,
et al., 1972). An error discussion by MacDonald (1970) would place
bias error for ESSA 3 and ESSA 7 within the same limits.

Detailed discussion on the magnitude of bias error in the Nimbus
2 and ITOS 1 data are not available. Indication from Raschke, et al.
(1970) is that the error in the Nimbus 2 data may be near or within
the 5 perceht estimated for Nimbus 3. Bias error in the preliminary
data from ITOS 1 are presumed to be within the same 5 percent level.

The maximum probable bias error has therefore been set at 5
percent for the albedo and longwave components.

The total bias error in the net radiation gradient can now be

determined. Differentiating Eq. (2) we get:

d(ARN) = d RN. - d RN (4)

Substituting from Eq. (1) and assuming that the solar constant is

known exactly we get:
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d(ARN) = (IodA)65 - (IodA)5 + dRL65 - dRLS (5)

We see that Eq. (5) is dependent upon the incoming solar insolation,
a function of latitude and time, and the direction and magnitude of
the bias error in albedo and longwave radiation.

There is no reason to suspect a sign change in dA or dRL with
latitude so that dA will have the same sign at 5% as at 65° latitude
and, similarly, for dRL. However, the error in albedo can be in
the same or opposite direction of the error in longwave radiation.

Eq. (5) has been used to calculate the bias error in the net radiation
gradient for different months of the year with a +5 percent bias

in each component. Actual data at both 5°N and 65°N were used in the
computation.

The shaded area in Fig. 5 shows the monthly range in the net radia-
tion gradient error when dA and dRL are of the same sign; a maximum
of +0.014 cal cm-2 min’1 occurs in the winter months which is reduced
to a range from zero to +0.004 cal cm? min™! in the late spring and
summer months. The other curves in the same figure show the bias error
in the individual net radiation budgets at 5°N and 65°N. The bias at
5°N is telatively unchanging throughout the year. The bias at 65°N
goes from a minimum during winter to a maximum during summer months.

Figure 6 shows the bias error in the gradient and component radia-
tion budgets when dA and dRL have opposing signs. The maximum bias
in this case is $0.010 cal cm 2 min~! which occurs in spring to early
summer. A minimum of *0.02 cal en”? min~! occurs in the winter months.

The smallest overall bias error exists in this case.
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Previously, investigators have shown that dA and dRL are of
opposite sign on the lowbresolution infrared radiometers on the experi-
mental satellites. Thus, the bias error in the latter case applies to
more than 75 percent of the data set.

Raschke, et. al. (1972) showed by use of a different reflectance
model for reduction of Nimbus 3 data that the albedos over snow and ice
(A > 50%) were overestimated by as much as 15 percent by the reduction
model applied to Nimbus 2. Overestimates by such a magnitude would
show up as a positive bias error in the net radiation gradient for that
data because of the large ice field in the polar regions. Such error
is minimized in the winter months when the solar insclation is small
and maximized in the summer months when the solar insolation is at its
greatest. However, from late spring to middle fall the sensor sees
very little ice at 65°. Thus, this bias falls within the previously

computed bias error for the gradient.

2.3b Other Error

Errbr induced by uncertainty of the exact value of the solar con-
stant éffects each gradient equally. Hence, it does not change the
relative interannual variation in the net radiation gradient and, there-
fore, can be neglected.

It is the opinion of this author that all random errors in ti%e
and space have been eliminated by using zonally averaged monthly mean

1

and seasonally mean data.
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2.4 Diurnal Effects

Earlier estimates of the diurnal variation in albedo and longwave
radiation were made by Vonder Haar and Hanson (see Vonder Haar, 1968)
for spring 1962, TIROS 4 data (Fig. 7). These preliminary results
were compared to Nimbus 3 and ESSA 7 data from April 1969 which have
approximate equator crossing times of 1130 and 1430 local, respectively
(Fig. 8).

The absolute values in TIROS 4 albedo profiles had to be adjusted
downwards by 5 to 8 percent to fit the new data. A profile at 65°N
was also estimated from the new data. A good fit exists between the new
data and the preliminary albedo profiles depicting diurnal variation.
We see that the albedo drops from early morning to mid-morning and then
rises into the afternoon at all latitudes.

The longwave data did not fit the preliminary longwave profiles
nearly as well as the albedo data except at 5°N where a precise fit is
again found. We see that a general decrease occurs in the longwave
loss from early morning to afternoon.

The diurnal effect on the net radiation gradient for Nimbus 3

and ESSA 7 data in the month of April 1969 is shown in Table 3.

TABLE 3: Diurnal variations in net radiation (cal em ™2 min_l) mea-
sured during April 1969

SATELLITE NET RADIATION BUDGET GRADIENT
s°N 65°N
NIMBUS 3 0.12 -0.10 0.22

ESSA 7 0.10 -0.06 ‘ 0.16




20

50 T L ] LJ T L | ¥ | § L 4 1 | 4

MIDLATITUDE
REGION

a0}

S°N
15°S 9

ALBEDO (%)
ol
3
]

30 b ITC REGION -
SUBTROPICAL
HIGH PRESSURE
REGION
25t -
20 | || | | 1 Il | 1 J | [ 1 1
6 8 10 12 14 16 18
.20 | |  J | ) | § ] ] | L J ] | | |
€
£ :
>25p -
n
8
< 30p o
-
o
'—
|
o 35F -
&
o
1 } ] |1 i 1 1 b & 2 1 '}
'406 16 I8

0 i2 4
LOCAL TIME (hrs.))

FIGURE 7. Diurnal variation in albedo and infrared radiation from
TIROS 4 for April (after Vonder Haar and Hanson; see
Vonder Haar, 1968).



50 | E7 — 65°N -

45

I |
1

1

40 45°N

E7
35¢ N3 .

ALBEDO (%)

30

20

20

30t

35

IR RADIATION LOSS (cal cm2 min)

S
-
3

6 8 0 2 49 16 I8
' LOCAL TIME (hrs)

FIGURE 8. Diurnal variation in albedo and infrared radiation from
Nimbus 3 and ESSA 7 for April fitted with TIROS 4 profiles.



22
The gradient near noon for Nimbus 3 data is 0.22 cal cm.2 min-l.
The gradient drops from near noon to afternoon to the ESSA 7 value of
0.16 cal cm 2 min~Y. This change of 0.06 cal em™2 min-1 is well beyond
the bias error which was computed to be 0.007 cal en 2 min! for the
month of April.

No adjustment have been made to the data in this study for the di-
urnal variation since the magnitude of its influence is not known for
the other months of the year; it is certainly a function of the time
of day, season and satellite orbital characteristics. Eventually the
diurnal change will be measured for all seasons by experiments on geo-
synchronous satellites which have the capability to sample at all local
times. One will then be able to adjust all of this earlier data for
diurnal effects to get average daily radiation parameters and, hence,
the gradient.

For the purpose of the study we will proceed with the knowledge

that the net radiation gradient decreases from near noon to afternoon.
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3.0 GENERAL CIRCULATION AND THE GRADIENT OF NET RADIATION

The intensity of the general circulation can be most quantita-
tively observed by parameterization of the atmosphere. Parameters
selécted for describing the atmosphere are: the zonal index, thermal
wind,available potential energy, and kinetic energy. Each parameter
was computed for each month of the 9 year period from January 1963
through October, 1971. Data for the computations were taken from the

daily objective analysis of the National Meteorological Center (NMC).

3.1 Zonal Index

The zonal index (ZI) is the west-to-east component of the geo-
strophic.wind taken across the 35°N to 55°N latitude band on a 700 mb
surface. It has been described as a very stable index since its
analysis over 20 years indicates typical fluctuations on the order of
+5 percent (Kutzbach et al., 1968). Therefore, small changes in
the index may infer significant changes in the general circulation.

Namias (1950) suggests that the zonal index is more of an indica-
tor of the organization of the tropospheric circulation than a measure
of its strength. The organization of the general circulation is
indicated by low index (blocking patterns) and high index (zonal flow).

The zonal index shows the expected seasonal trend over the 9 year
period (Figure 9). The dashed line represents the 9 year monthly
averages and does not change from year to year. An interesting feature
is the sharp decline in the index for February 1968 - low index.
Examination of the tropospheric winds revealed the maximum winds to be
above normal in strength but south of their normal position. Within

the 35°N to SSON latitude band the winds were more meridional than normal
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due to amplified troughs and ridges. The foregoing discussion points
out that the index is not a good descriptor of the general circulation
strength but may be, to a first approximation, a quantitative measure
of the organization of the mid-latitude general circulation.

A notable feature is the above normal index for November, 1965
through February, 1966; it is approximately 20% higher than the mean
indicating strong zonal flow. Other departures that may be significant
are positive departures in winters 1963/64 and 1966/67 and negative
departures in winter 1967/68 and spfing to summer 1967.

A qualitative look at the net radiation gradient shows significant-
ly stronger gradients in September through November 1965 than in the
same months of 1964 (see Figure 1). However, the gradient and index
may be inversely and neutrally related in winter 1963/64 and December
1966, respectively.

Also of interest is the November maximum in the mean zonal index

profile which also appears in the mean net radiation gradient profile.

3.2 Thermal Wind

The thermal wind is defined as:

. 82
VT _ T, (AZ)
where g 1is the acceleration due to gravity, f 1is the Coriolis

parameter, - the north-to-south gradient from 20°N to 70°N, and

2
3y
AZ the thickness of the 1000 to 300 mb layer.

The thermal wind was selected as a parameter since the north-to-

south thermal gradient, implicit in the thermal wind, is indirectly
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related to the north-to-south difference in radiative energy. This
indirect relationship evolves primarily from diabatic heating of the
atmosphere through latent and sensible heat transfer from a radiatively.
heated or cooled earth's surface. Figure 10 shows that the thermal
wind 1égs the net radiation gradient by 4 to 6 weeks, an apparent
indirect relationship.

One would hope to see a relationship between the interannual
variations of the net radiation gradient and the thermal wind since
the two appear to be related on a month to month basis. Examination
of the thermal wind (VT) over the nine year period (see Fig. 11) reveals
significant positive anomalies in the following periods: November
1965 through February 1966, July 1966, January and February 1967,
March 1969, April 1970, and January and July 1971. Significant
negative anomalies appear in winters 1963/64 and 1967/68. The
periods for which the net radiation gradient are available (winter
1963/64, November and December 1965, July 1966, and March 1969)
have anomalies in the gradient with the same sign as the anomalies
in the thermal wind (see Figure 1).

Of course one can start with a gradient anomaly and look for
a correspoﬁding anomaly in the thermal wind. Large positive anomalies
in the gradient for April 1969 and January 1970 are not reflected

in the thermal wind.

3.3 Ene:ggtics

Interannual changes in the net radiation gradient not reflected
in the intensity of the general circulation may, However, cause the

atmosphere to operate in a different mode. By computing available
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potential and kinetic energies which are partitioned into their
zonal and eddy components one can observe the energy distribution
between each component. A further refinement, which has not been
done in this study, would be to compute the generation, conversion,
and dissipation terms of the atmospheric energy cycle to see the
actual mode of_operation.

The relative distribution of energy between the zonal and eddy
components ié a function of the order used in computing space and
time means. _Oort (1964) &iscusses this thoroughly and establishes
a set of equations for space, time, and mixed space-time domains.
All combutations in this study are within the mixed space-time domain.
All integrations,faken over the mass of the atmosphere (trapezoidal
method of integration was used), have limits from 850 to 200 mb
and 20°N to 90°N. These limits were set because of.data limitations
in the NMC.daily objective analysis. The zonal values were computed
from the.monthly mean data which included botﬁ the 00 and 12 GMT
data. The eddy components were computed just from the.daily 00 GMT
data.

Symbology used in the equations is defined as follows:

p = pressure

P, = 850 mb in this study
T = temperature in degrees absolute
m = mass

6

potential temperature
u, v = east-west and north-south wind components
R = gas constant

Cp = specific heat at constant pressure
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[X] = zonal average of X

X* = deviation from zonal average of X
X = time average of X

X' = deviation from time average of X

X = area average of X over a closed isobaric surface

X'' = deviation from area average of X

3.3a Available Potential Energy

Zonal and eddy available potential energy are defined in the

mixed space-time domain as:

ja~]
1

5 f v [T]"2 dn Q)

and

P, = 4C, J v [T + T*2] dm, (8)

respectively, with
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Eq. (9) depends upon the mean static stability of the atmosphere;

this is more apparent when <y is written in the form

y=F& @ -nt T (10)

P

where Fd is the dry adiabatic lapse rate and T is the time mean

lapse rate of the environment.
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Eq. (9) can be used in the definition of available potential

energy as:
2
y=-k[%} (11)

where k 1is independent of pressure and time (Oort, 1964). The
procedure used in this study was to compute k for each month of
the 9 year period (106 values) and to use Eq. (11) in Egs. (7 and 8).

Figures 12 and 13 show computed zonal (Pm) and eddy (Pe) avail-
able potential energies, respectively, for the 9 year period. Again,
the dashed curve represents the average monthly values and does
not change from year-to-year.

A large positive anomaly in Pm , approximately 12 percent of
Pm , again appears in November 1965 through February 1966 as it had
in the zonal index and thermal wind. Other anomalies that also
appeared in the thermal wind are positive anomalies in January and
February 1967, and February and April 1969, and a negative anomaly
in winter 1967/68. As we shall see later, the mean available poten-
tial energy undergoes interannual variations in actual magnitude
much larger than the three other energy terms.

The ménths for which radiation data were available (November
1965 and February and April, 1969) show corresponding variations in
the net radiation gradient and Pm .

Eddy available potential energy shows instead of a positive
departure from the mean in November 1965 through February 1966, a
negative departure. Other features which stand out are the large

positive departures in January 1963 and January through May 1967.
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However, no satellite data is available for these periods. The
negative departure from November 1963 through January 1964 is
in agreement with the net radiation gradient for the seasons SON

1963 and DJF 1963 (see Figure 3).

3.3b Kinetic Energy

Zonal and eddy kinetic energy are defined in the mixed space-

time domain as:

f
K =% | (@° + (V1% dn (12)

and
[

K =% | [u?+v'Z+ u*?2 + v*2] dm , (13)

respectively. Geostrophic winds were computed for this study since
the actual winds in the NMC objective analysis were not available
for the entire 9 year period. Because of the geostrophic approxima-
tion, the second term in Eq. (12) involving the zonal average of
the meridional wind is zero. The latitudinal limits in the integra-
tion are also reduced to 22.5°N and 87.5°N.

The large positive anomaly which appeared in the other parameters
for November 1965 through February 1966 again appears in Km (Fig. 14).
The similarity of the interannual variations between Km and the other
parameters stops here. Another striking feature, the largest anomaly
in Km, is the large positive anomaly in January 1970. This anomaly
in Km agrees with the large positive anomaly in the net radiation
gradient in January 1970. Likewise, the negative anomaly in Km for
November 1964 through. February 1965 agrees with the negative anomaly

in the gradient of net radiation for the same period.
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The large positive anomaly in winter 1965/66 apparent in the
other parameters is slightly negative in Ke (Fig. 15). Comparing Km
and Ke one can conclude, to a first approximation, that the inter-
annual variations in Km and Ke are inversely related. Of course this
is an expected result; given a constant total kinetic energy, then
an inverse relationship will exist between the mean and eddy components.
This is a particular case which illustrates that given slight varia-
tions in impulse, the atmosphere may not respond with a change in
its total energy but may only change its mode of energy transformation.

The foregoing qualitative discussion brought out that relation-
ships between the interannual variations of the gradient and the
general circulation parameters are apparent for the cases when
variations in either one or both are very large. The relationship
is summarized in Table 4. A positive sign indicates that the
variations in the net radiation gradient and the general circulation
parameters are of the same sign; a negative sign indicates that they
are of opposite sign and a zero indicates that dne of the variables
does not deviate from the mean.

3.4 Quantitative Comparison

Correlation coefficients were computed between each of the
general circulation parameters. The annual cycle was first removed
from the data so that only interannual variations in the monthly
values were compared. There were 106 samples of each parameter.

The results showed the best correlations of 0.68 and 0.67 between
the thermal wind (VT) and zonal available potential energy (Pm)

and between eddy kinetic (Ke) and eddy potential energies (Pe),
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TABLE 4: Summary table of qualitative comparison between interannual variations in the net radiation gradient
and the general circulation parameters.
Parameter J F M A M J J A S 0 N D
YAl -65 +65 +65 +65 -65 +65 065 +65 -65 +65 +65 066
066 -69 -69 +69 +69
069
070
Vt +65 +65 +65 +69 +66 +65 +65 +64
+69 +69 +69 065 066
-70 +68
P +65 +65 +65 +65 -64 +65 -64 065
m -70 +69 +69 +69 069 -68 +65 066
+69 068 +68
p -70 -65 -65 -64
e -65
K -65 -65 -69 -71 -64 -65 -65 -68
© 069 -69 +68 068
-70
K +65 +65 +65 +64 +64
n +70 +65

8¢
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respectively. The high correlation between VT and Pm is explain-
able in the fact that both parameters are a measure of the north to
south atmospheric temperature difference. The large positive
correlation between Ke and Pe 1is not so easily explained, but
is directly dependent upon energy generation, dissipation and
conversion rates. A correlation of -0.47 was found between the
interannual variations of zonal kinetic and eddy kinetic energies
which demonstrates to some degree the inverse relationship between
the zonal and eddy components. A somewhat unexpected result was
the lack of correlation between the interannual variations in the
zonal kinetic energy and the zonal index. This again probably
relates to the fact that the zonal index may be a better deécriptor
of the organization rather than the intensity of the general circulation.

Correlations coefficients were computed between the gradient of
net radiation and the general circulation parameters with the annual
cycle removed. The correlations were based on a sample size of 35
which require correlations larger than 0.335 and 0.430 to be significant
at the 5 and 1 percent levels, respectively. The monthly means used
to remove the annuallcycle from the general circulation parameters
were established from the same months which were used to remove the
annual cycle from the net radiation gradient. In this respect, the
interannual variations from both sets of data will be compared using
input data from the same months.

The results are shown in Figures 16a and 16b. The computations
were made with the net radiation gradient lagging the circulation

parameters by 1 to 12 months (shown as a minus lag) and with circulation
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parameters lagging the net radiation gradient by 1 teo 21 months
(shown as a positive lag).

Excluding the zonal index, the best correlations appear with
positive lags of 2 to 4 months. For the most part, these correlations
are centered about a 3 month lag. Other correlations which are
significant appear at 15 to 18 months lag with signs opposite’of
those at 3 months lag. These correlations have an average lag at
17 months.

Scanning the complete graph another general inflection in the
curves appears at 9 to 10 months lead (-lag), especially prominent
in the thermal wind and eddy potential energy. Going from crest to
crest or trough to trough one sees that the wavelength is 26 to
27 months in length. Finding a wave in the correlations and especially
a wavelength of 26 to 27 months was totally unexpected.

The lag relationship of the wave indicates that the general
circulation parameters lead the net radiation gradient by 9 to 10
months or lag it by 3 months. Because of this wave, in contrast
to the appearance of just one major peak in the correlation, no
cause and effect relationship can be established.

Peak positive and negative correlations in the seasonal data
were not as well defined--a most probable effect resulting from a
smaller sample size (18) and averaging the data into seasonal values.
For this reason, the interannual variations in the seasonal data will

not be pursured any farther:
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4.0 ANALYSIS OF RESULTS

4.1 Gradient and Circulation

Interannual variations in the net radiation gradient are indirect-
ly caused by variations in the general circulation. Variations in
the general circulation affecting the gradient are primarily manifested
in cloudiness. For an example, decrease in middle and low cloudiness
in the tropics contributes to a stronger north-to-south net radiation
gradient.

Going one step farther, one should expect changes in the net
radiation gradient to feed back into the general circulation. Knowing
the time constant for the feedback may be important to long range
weather prediction since the primitive equation models are presently
limited to 10-14 day predictions.

It takes on the order of 4 to 6 weeks for the atmospheric
temperature structure to respond to seasonal changes in the net
radiation gradient as evidenced by the thermal wind lag. Also,
there is an apparent 3 month response time between year-to-year
differences in the net radiation gradient and the circulétion para-
meters. . Of course, this is based on an assumption that the two are
related. In addition, there are a number of cases when a qualitative
inspection showed that no apparent lag relationshib existed between
the year-to-year variations in the two.

A question to be answered is why the apparent cycle in correla-
tions with a near 26 month period and why the initial 3 month lag
in the circulation behind the gradient or, looking at it another way,

why a 9 month lag in the gradient behind the general circulation.
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4.la Periodicity in Data

The cycle with approximately a 26 month period as seen in the
correlation coefficients must result from a similar cycle in either
one or both of the data sets used in the correlation.

With some imagination, one can fit a sine curve with approximate-
ly a 26 month period to a time series of the interannual variations
in the monthly net radiation gradient (ARN') (Fig. 17). A definite
increase is apparent in ARN' from early fall 1964 to winter 1965/66.
This same general trend, but not as well defined, avpears in early
fall 1968 to the latter part of 1969 and is just two wavelengths
downstream from fhe earlier trend. Therefore, the ARN' data will
tend to correlate with any other data set which contains a 26 month
period whén certain lags are introduced;

Could this cycle be indicative of the 26 month or quasi-biennial
cycle? The temporal distribution of ARN' did not definitely show
the cycle but indicated that one may be present. Data is needed in
1967 and early 1968 so that, at least, the existence of one wave might
be verified. Future measﬁrements by sateliites will enable us to
draw valid conclusions concerning the presence of a 26 month oscilla-
tion in the data.

If the quasi-biennial cycle is in ARN' , then it is most
likely in the interannual variations in tropospheric cloudiness
since cloudiness is the primary modifier of ARN' . That it is in
the tropospheric cloudiness is supported by the fact that it has
been found in the temporal distribution of tropical precipitation

(Garstang, 1967).
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A wave with a 26 month period must exist in the general circuia—
tion parameters since no well defiﬁed wave was found in the ARN'
Such periodicity has been found in the mid-latitude troposphere by
investigation of the sea level zonal index (Brier, 1969), in surface
témperature (Landsberg et al., 1963), and 500 mb angular momentum
transport (Miller, et al., 1967). Many studies indicate a dominating
role of winter months in the 26 month oscillation (seé Reiter, 1969).

To determine if such a wave exists in the general circulation
data with the annual cycle removed--which was intercompared with
the satellite measurements--a power spectrum analysis was performed
on each 9 year data set. The first 11 harmonics representing
periods of 108 months to 9.8 months are shown in Figure 18. One
would expect to see a relatively large percent variance for the fourth
harmonic (27 months period) if the quasi—biennial oscillation is in
the data. Indeed, such large variance is seen in the smoothed
spectrum (solid curve) for eddy available potential energy--the
same parameter which had the most distinguishable 26 month cycie
in the correlation coefficients (Fig. 16a). The smoothed spectrum
does not show the 27 month periodicity nearly as well in the other
parameters. However, the unsmoothed spectrum (dashed) shows a peak
in the variance at 27 months periodicity in all parameters but the
zonal index and zonal kinetic energy. The predominate variance in
zonal. kinetic energy and the thermal wind is with a periodicity on
the order of 54 months rather than 27 months. In all, the two eddy
parameters show a 27 month periodicity best.

The spectrum for zonal kinetic energy shows a minimum of

variance at 27 months but the correlation coefficients showed a well
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defined half wavelength from 3 months to 16 months lag. Therefore,
it appears that a 26 month oscillation exists in the satellite

measurements.

4.1b 3 Month Lag

The next qﬁestion to be investigated is the 3 month lag
in the correlations--a feature common to all general circulation
parameters. The phase relationship between ocean storage and the
atmospheric circulation might be the best place to look.1 The
seasonal storage curves for the northern hemisphere at latitudes 5N,
30N, and 65N show in the periods March-April and September-October,
no net energy transfer between oceans and atmospheré (Fig. 19). If
the oceanic storage is the primary agent contributing to a 3 month
lag, then, during these periods, no large lag relationship should
exist.

Examination of the month to month correlations between interannﬁal
variations in zonal available potential enefgy (Pm) and the net
radiation gradiént ( RN) with both no lag and a 3 month lag might
givg evidence of the oceanic influence (Fig. 20). The solid bars
represent interannual variations in ARN while the other bars
represent the same variations in Pm . In the period March-April
;he correlations are nearly as good with and without a lag relation-
ship except that the no lag may be slightly better. The ARN'

for March, along with the period May through July (except July, 1966)

1Professor Verner E. Suomi originally suggested this line of inquiry.
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are within or are very near the bias error of +0.01 cal cm-2 min_1
' (see section 2.3a) and, therefore, may not be relevant. Looking
at the period, September-October, all but one sample shows positive
correlation with a 3 month lag and all but one sample shows a negative
correlation with no lag--a reverse relationship from what would be
expected with the atmosphere-oceans decoupled (no lag) and coupled
(3 month lag). Hence, the oceanic storage effect on the lag as
hypothesized is not strongly apparent in the correlations.

Correlations are best when interannual variations in ARN
and the circulation parameters are anomalously large in the same
direction. Examination of the interannual variations in ARN and
zonal kinetic energy with 3 month lag (Fig. 21) reveals a grouping
of lérge anomalous ARN’ in the fall pairing up with large anomolous
zonal kinetic energy in winter. This same grouping is apparent,
but to a lesser extent, with the other circulation parameters
(inverse relationship with the eddy parameters). Therefore, it
appears that the fall-winter relationship in the correlations is

‘the prime contributor to the 3 month lag.

4.2 Interhemisphere Comparison

The ARN' for the northern hemisphere (solid line) are compared
to the ARN' for the southern hemisphere (Fig. 22). All ARN'
greater than the maximum bias error of +0.014 cal cm-2 min-1 are
in phase between hemispheres except for the January months. The
January 1970 irregularity is primarily contributed to by the January

1970 gradient anomaly; January 1970 was the month with a very large

positive anomaly in the zonal kinetic energy.
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The in phase relationship appearing in the months of June
through Decembef implies either one or both of the following:

(1) the net rédiation budget of the tropical region, which is common
to both hemispheres, is undergoing large year to year changes, or
(2) the net radiation budget of both the north and south near polar
regions are changing year to year with the same sign. The first of
these possibilities is the most logical choice. However the

cause cannot be isolated until all radiation data are normalized

to eliminate the diurnal variation between data sets.

Regardless of the cause, the ARN' are in general, simultaneous-
ly large or small in both hemispheres. If a true relationship
exists between ARN' and the general circulation, then one should
expect to see a relationship in the year to year variations of
the general circulation parameters between each hemisphere. An
aﬁalysis of the general circulation of the southern hemisphere is

needed to confirm such related variations.

4.3 Gradient and Cloudiness

A particular case, April 1965 compared to April 1969, has been
selected for study. These two months comprised the strongest inter-
annual variation in ARN for all the data sets. Allison et al. (1971)
found minimum and maximum cloudiness in the eastern tropical Pacific
for April 1965 and April 1969, respectively. The zonal averages of
albedo were higher in April 1969 (25 percent) than in April 1965
(22 percent). These albedoes were reflected in the net radiation
budget at 5N as 0.12 cal cm 2 min ! for April 1969 and as 0.15

cal cm-2 min—1 for April 1965. Therefore, a stronger north-to-south
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net radiation gradient would prevail with the less tropical cloudiness
period of April 1965.

However, overcompensating changes took place at 65N so that
the gradient was much stronger in the more tropical cloudiness period
of April 1969. The change from April 1965 to April 1969 at 65N
was an increase in both the albedo and longwave loss from 37 to 52
percent’ and 0.24 to 0.29 cal cm_2 min-l, respectively; thus, changing
the radiation budget from 0.01 to -0.10 cal cn 2 min"'. These
"changes in the later period (1969) could be indicative of above
normal low and middle cloudiness at 65N.

For this particular case, changes in the near polar region
ﬁad a greater effect on the gradient than the apparent extreme
change in clqudiness in the tropical regions. All general circula-
tion parameters relate positively to the April 1965 and April 1969
change in ARN (except for the eddy components which show inverse
relationship) for both no lag and 3 month lags. The zonal index
and éonal kinetic energy show a preference for a stronger postive
relationship with no lag. Hence, the interannual variations in
both ARN and general circulation parameters appear to be related
in this particular case. So here is a case exemplifying the need
for study in the near polar regions for a better undérstanding of

anomalies in the atmosphere.
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5.0 SUMMARY.AND CONCLUSIONS

The pole to equator gradient of net radiation and the genéral
circulation of the atmosphere were brought together in an interrelated
study for the first time. Interannual variations in the gradient of
net radiation and the intensity of the general circulation appear to
be related.

In mosﬁ cases when variations in the net radiation gradient were
large, corresponding large anomalies were found in ore or more of the
general circulation parameters. However, the study was not restricted
to extreme cases.

Statistical correlations between the gradient of net radiation
and each of the general circulation parameters, with the annual cycle
removed from each variable, were best when the general circulation
parameters lagged the net radiation gradient by 3 months. Eddy
available potential energy showed the best correlation at -0.73 followed
by the thermal wind, zonal kinetic energy, zonal available potential
energy, and eddy kinetic energf at +0.64, +0.56, +0.49, and -0.38,
respectively. Statistical significant correlations were found at
16 to 18 months lag in all the circulation parameters but with an
inverse sign from those at 3 months lag. A similar inverse trend
appeared with a lead of 9 to 11 months. All correlations taken together
show a wave with a wavelength of 26 to 27 months which is either 3
months or 9 to 10 months out of phase with the net radiation gradient.
Additional satellite data are needed to ascertain the validity of this

wave and the phase relationship.
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This type of gradient can be obtained on a routine basis as
satellite data becomes available. Providing these results continue to
bear out, then such sfatistics will be a step forward towards the
prediction of the general circulation on monthly and seasonal basis,

a hurdle yet to be surmounted by the primitive equation models.

Future studies should investigate in more depth the role of cloud-
iness in thevgradient of net radiation, and the feedback mechanisms
relating the net radiation gradient, cloudiness, and the inteﬂsity of

the general circulation.
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The temperature difference between the equator
and the pules is a major factor in controlling
the ‘intensity of the frontal zone and thru this,
the climute of the middle Jatitudes (horff and
Flohn, 1968). But due to the fact, that the
temperature conditions in the tropics are very
stable, onc approach to the global problem is to
concentratc on the heating processes in the polar
zones, Fortunately, since the time of polar or-
biting satcilites we have a Jarge amount of 1nfurna-
tion about the radiation budget of these remote
arcas. For climatolopical purposes, however, the
knowledge of the radiation of the system earth-
plus-atmosphere is only the first step (Vonder ilaar,
Suomi, 197i). ANext we have to c¢xamine the scparate
heat budget of the surface and of the atmosphere.
This requires an estimate of the global radiation
at the surface and generalized values for the albe-
do of snow in relaticgn tce sun position and cloud-
iness (Lettau, Lettau, 1969).

For information on this subject, radiation
measurements were made over a suowfield at Pingree
Park, Colorado in January and February 1972. 7The
place is 2740 m high and Jocated at 40° 34.1' N
and 105° 35.5' W (U. S. Geological Survey, 1962).
The horizon has a mean elevation of 11.1°9, 7.5°
at the point of sunrise and 9.59 at sunset.

For the observation of glohal and reflected
radiation a set of Eppley blick and white pyrano-
meters was used. For a perfcct separation of the
upper and the lower hemisphcre and to avaid un-
controlled temperature gradients inside the instru-
ment, two ventilated aluminum disks werc mounted
at the level of the sensors. “Vhe dependence of
the output from the cosine law was checked
(Hinzpeter, 1952) and found rcasonable, compared
with other instruments(Dirmhirn, 1959). The
calibration was made by the shaling method (WMO,
1971). An Eppley normal incidence pyrheliometer
served as a reference instrument. In addition,
the direct solar radiation and the turblidity of
the atmosphere were derived from that instrument
on cloud-free days (Peyinghaus, 1972).

The observation period lasted for ten days.
buring that time all types of sky condition
occurred. As an cxample for a complctely cloul-
free day the 3ist of January was chosen. At
that timc the snow at the site was dry, fine-
grained and lightly windpacked.  The global vadia-
tion that day was 327 ly, but only 77 ly were
ahsorbed by the surfucc. This would not even
compensyte a meon effective lonpwave radiation of
.06 1yfuin. 7The actual infrared value, however,
on a cloudfroe day with an atmospheric water-
content of .24 cm ppw and a turbidirty factor 8 =
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.01 is certainly higher (Geiger, 1961). So, if at
all, we can expect a positive radiation balancc at
the surface only at noon time. Thc trend of global
radiation and its components, as well as tempcrature
and albedo for the 3lst is shown in Fig. 1. That
dag the sun reachcd an elevation of 10Y at 8:13 a.m.,
20° at 9:23 a.m. and 32° at local noon (12:11 p.m.).
In the afternoon it went down to 20° again at 3:00
p.m. and to 10° at 4:09 p.m.
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FIGURE 1: Radiation, temperature (Te) and albedo

(A1) on 31st of January, Gl - global
radiation, Di - direct radiation, Df -
diffuse radiation of the sky.

Completely different conditions werc found on
a cloudy day, for cxample, the 28th of January.
The total global radiation just reached 81 ly and
only 9 ly were absorbed by the snow. The maximum
intensity did not exceced 13 ly/min and thc albede
varicd between 85 and 90%. There seemed to be 2
trend of albedo parallel to the sunclevation, but
due to the low radiative intemnsity, the radiomcter
output was ncar the noise limit.

The question may Le raised as to whether the
properties of a snhowfield in middle latitudes are
cqual to thosc in polar areas. A comparison with
results from Antavctica of several authors lead.
to a positive answer. Only Hoinkes (1901) give:
noticeably higher albedovalues. Ilanson (lDor) oo~
ever, covers our results completcly with reflect:-
itics from 74 to 83% for clear days with clevatrivy
ungles around 20°. Due to the astronomical conditt



at the seuth pole, he ceuld not give a dally trend,
This we get frow Liljequist (1950), who obsecrved

the same asymmetric trend of albado that we measurcd
in Pingree Park (in becember and January at Maudheim
'[71o 5]). lie explains it as an cffect of meta-
morphosis of snow. In November he found a symmetric
trend for morning and afternoon. Rusin (1964) shows
the albedo in relation to sunclevation, but does

not say whether these values were only observed in
the morning or also in the aftcrnoon.

The daily trend, however, must not be confused
with the effect of longterm aging. While the latter
causes a permancnt decrease of albedo with the age
of a snowfield, the daily tread docs not lcad to
permanent change of the reflectivity. A strong
case of aging is described by Kalitin (1930) who
found a change of albedo from 80% to 50% in 10
days over a nonmelting snowficld near Leningrad.
Scheibbner and Mahringer (1968) found a drop of
10% during 10 Jays in the Alps and explained it with
a pollution of the snow by rock dust. In Pingrece
Park, however, we only found a decreuse of reflec-
tivity of 1 - 2% after the first day of sunshine,
caused by a packing of the snow (PDirmhim, Trojer,
1955). Due to Hanson (1960), this is also the only
process of aging found in Antarctica. So, for a
generalization of the albeda, we can neglect it.

For a general daily trend we compare the albedo-
values of different authors as given In Fig. 2.
That our gradient is steeper than the others, might
be caused by the fact, that the snowfield was in-
clined by about 2° towards SL. So we chose as a
generalized value for clear days over a windpacked
snowfield a reflectivity of 78% at a zenith distance
of the sun of 60°. With an incrcasing distance of
10° we assumc the albedo will decreaSe by 3.5%.
This adopted line is not as steep as ours and lies
between that of Rusin (1964) and Liljequist (1956).
In the central arca of Antarctica and Greenland
we will use these values in the morning as well
as in the afternoon. In the mpore marginal zones we
take the noon value constant {or thc rest of the
day. On cloudy days we will apply to an albedo-
value of 89% all day long.

For processing measurements from the satellite
NIMBUS Raschke ct. al. (1972) uscd a curve bascd
on Rusin's work. A comparison of the proposed
generalized reflectivity and our results from
Pingrec Park is shown ir Fig. 3. The data have
been normalized aguinst the value of 60° zenith
distance. This makes it casier to use this graph
al so for other snow conditions than defined above,
c.g. for new unpacked snow, where we observed a
5% higher reflcctivity tham usual.
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PRECEDING PAGE BLANK NOT FILMED

ABSTRACT

One of the biggest advances in meteorology on the global scale will
be achieved in the near future with the routine launching of meteorological
satellites with the capability of remotely sensing temperature and moisture
profiles. At the present time, development has not proceeded to the point
where a sounding may be made through thick cloud cover and hence, surface
augmentation must be supplied to those areas of the‘globe with thick, pro-
longed cloud cover.

Many cloud atlases have been published using data from recent meteoro-
logical satellites. This paper is not an atlas; it gives the results of
research conducted at Colorado State University into the problem of persis-
tent cloudiness.

A year of_brightness data from ESSA 9 and several months of data from
ITOS 1 have been assembled and processed in such a manner that sequences of
extensive, opaque cloudiness may be depicted. Results indicate that the
observing system over the sparsely populated regions of the southern hemis-
phere should possibly use meteorological buoys to augment remote satellite

sensing of the atmosphere. Locations for buoy deployment are noted.
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Introduction

Recent advances in the capabilities of meteorological satellites
have made possible an objective, but as yet uncalibrated, nephanalysis.
For many years vidicons on the ESSA series of satellites have provided
brightness data which can be digitized and mapped over the entire globe
on almost a daily basis. Since January 1967, an archive of brightness
data has been maintained and is available on magnetic tape at the Na-
tional Weather Records Center (NWRC), Asheville, North Carolina 28801.

A global cloud climatology would serve many meteorological purposes.
However, the vidicon brightness data are suitable only for the detection
of the brightest cloud masses. It is just this type of cloud that signi-
ficantly interferes with vertical sounding of the atmosphere from satellites.
Until microwave radiometers are used to overcome part of this cloud pro-
blem, it will be necessary to know which portions of the globe are inac-
cessible to remote sensing. Those selected portions of the globe with pro-
longed periods of thick overcast must have surface reports to complement
the satellite sensor and round out a global observing system. If the
present surféce observation network does not sufficiently cover these
areas of persistent cloud cover then a new surface observation network
may be needed.

In addition to the application of the results of this study to the
planning of a global observing system for the Global Atmospheric Re-
search Program (GARP), motivation for the work arose equally:

a) from the knowledge that cloud cover is the primary variable
influencing changes in the earth's radiation budget, pre-
sently under study at Colorado State University (CSU), and

b) because methods to parameterize the energy budget of our at-

mosphere must be heavily based on the occurrence of opaque
cloudiness.



1.0 Data Availability and Reduction

The ESSA 9 satellite was launched February 26, 1969 by the National
Aeronautics and Space Administration into a nearly circular, sun-synchro-
nous pelar orbit at an average altitude of 910 statute miles above the
earth's surface. The orbit is inclined at 1020 (retrograde) to the
equatorial plane with an equatorial crossing of approximately 1430 local
time.

The original vidicon data tapes received at NCAR (3 days of data
per tape) had to be reduced in resolution for economic reasons. Digi-
tized data from ESSA 9 is resolved each day into two 4096 x 4096 ma-
trices, which present polar stereographic views of both Northern and
Southern hemispheres. A 64 x 64 submatrix of this full resolution data
corresponds to a Numerical Weather Prediction (NWP) grid. Thus, there
are 4096 NWP grid squares per hemisphere. The term "meso-scale" refers
to an 8 x 8 submatrix of the NWP grid square and, hence, has an area
1/64 of an NWP grid square. Meso-scale data covers a 512 x 512 square
grid per hemisphere which has a resolution that varies from 16 nautical
miles at the equator to 32 nautical miles at the poles. Each meso-scale
grid originally contained 64 data points with integral values from 0
(darkest) to 14 (brightest), representing a measure of the brightness
of clouds, background, or a composite of both. The original brightness
data with a range 0-14 was reduced at the National Environmental Satel-
lite Center, into 5 equal classes from 1-5, thus achieving a threefold
reduction in dynamic range prior to processing by CSU. Space reduction
was achieved by combining the frequency distributions of 16 meso-scale

data grid points, thus providing a % NWP grid mesh resolution (190 km
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at 60°N) for the present study. In a % NWP there are 1024 data points
(the population of the new frequency distribution). Those interested
in a description of the tape format of the satellite data should consult
Booth and Taylor (1968).

The original data tapes have now been reduced to a workable form
consisting of 30 days data per tape. Checks were then made on the

quality of the compressed data and a day classified as missing when:

1) A day is missing from the original meso-scale tapes,

2) a) The number of data records per day is >1028 or
<1020 (there would normally be 512 data records
per hemisphere),

b) More than 20% of the % NWP grids have populations
>1024,

and % NWP's classified as missing when:
3) There are fewer than 5/16 meso-scale grids in a % NWP,
4) The cumulative population of a frequency distribution
for any % NWP is < 100.
Using criteria 1 and 2, the following days have been deleted from the

original data bank:

Julian Day Julian Day
April 6, 1969 96 November 5, 1969 309
April 27, 1969 117 November 6, 1969 310
May 18, 1969 138 November 11, 1969 315
July 15, 1969 196 December 1, 1969 335
August 6, 1969 218 December 19, 1969 353
August 12, 1969 224 January 8, 1970 8
August 26, 1969 238 February 1, 1970 32
August 27, 1969 239 February 4, 1970 35
August 30, 1969 242 February 21, 1970 52
August 31, 1969 243 March 1, 1970 60
September 11, 1969 254 March 14, 1970 73
September 17, 1969 260 March 15, 1970 74

October 10, 1969 283 March 21, 1970 80



2.0 Methodology

Miller (1971) converted brightness data to octas of cloud cover

through the simple weighting scheme shown below:

Orig. Bright- Class Contribution Weights

ness Range to total cloud October-May June-Sept.
amount

0, 1, 2 1 0% 0 0

3,4, 5 2 25% 2 2,5%

6, 7, 8 3 88% 7 7.5*

9, 10, 11 4 100% 8 8

12, 13, 14 5 100% 8 8

*The summer and winter weights were applied according to the hemispheric
season.
Miller's weighting scheme was designed to yield total cloud amount.
We have not examined his results; however, the scheme would not be ef-
fective for determining opaque cloud cover because it weights clouds
with low albedo (class 2). The values used in this study to determine

opaque cloud cover are listed below:

Orig. Brightness Class Contribution Weights1
Range to total opa-
que cloud amount

0, 1, 2 1 0% 0
3,4, 5 2 0% 0

6, 7, 8 3 100% 1

9, 10, 11 4 100% 1

12, 13, 14 5 100% 1

1

Cloud cover in this study is not determined on an octal, but rather a
binary (yes, no) basis.



Even after the new weighting scheme was applied, the brightness re-
sponse on ESSA 9 still didn't yield a satisfactory simple correlation
with opaque cloud cover. The problem arose from noise characteristics of
the vidicon sensor used to détermine the presence of clouds. For instance,
if 1 of 1024 data points fell in class 1 or 2, then the entire % NWP was
considered clear. Thus, the final output allows 4% (41 of 1024) of the
population to fall in class 1 or 2. This step is necessary primarily
to correct for instrument dropout since allowing less than 4% tolerance
yields output delineating only the ice caps.

Comparisons of the resultant cloud cover have been made with mini-
mum albedo maps from Nimbus 3 to determine whether background noise
(surface albedo) will bias the nephanalysis. As it turns out, with the
weighting scheme above, the output yields results 6n1y for an equivalent
albedo > 35%. Thus, the only background problem exists in areas covered
with ice and snow and the North African deserts.

More checks were made to determine the quality of the output by
comparison with Nimbus 3 albedo maps, Miller's weighted output, actual
surface observations over the United States, and actual cloud photo-
graphs. The results were encouraging and verified the fact that a 4%
tolerance must be made for instrument dropout. Allowing more than
tolerance would reveal larger areas of cloud cover but in reality, if
allowance was made above the 4% threshold, the baby would be thrown out

with the bath.



3.0 Application to the Global Study

Owing to the great potential offered by the possibilify of remote
sounding of the atmosphere, research has been directed toward determining
areas of the globe which are subjected to persistent opaque cloudiness.
Initial research into this problem centered around finding adjacent
clusters of % NWP grids with persistent cloudiness. It was found that
most global cloud cover is transitory in nature with 5 day occurrences
of cloudiness almost nonexistant. A maximum of 3 consecutive days of
cloud cover was found to be an appropriate upper threshold when dealing
with persistent cloudiness, but the fact that longer time intervals
are possible have been taken into account in the final output.

Specifically, 3 parameters were used in this nephanalysis study:

a) Maximum number of consecutive cloudy days (parameter 1)

b) Number of occurrences of 3 consecutive cloudy days (reckoned

as 1, 2, 3; 2, 3, 4; 3, 4, 5; etc.) (parameter 2)

c) Total number of cloudy days (parameter 3)
All of the above have been examined for time intervals of 15, 30 (monthly),
90 (seasonal) and 365 (annual) days.

Clarification should be made at this point as to the dependence of
strings of cloudy days on missing data. The first missing day in a %
NWP square is said to be cloudy (clear) if the preceeding day is cloudy
(clear). Note that the following day does not enter into the decision.
Given a second missing day in the same % NWP, this day will always be
considered clear and any string of cloudy days will be terminated. Sev-

eral examples of this procedure are given on the next page:



B = cloudy 0 = clear m = missing day

Day _ Parameter Parameter Parameter Total Days
12345678910 1 2 3 Reported
RaREROOORAR 4 3 7 10
B®@8m000000O0 3 1 3 9
OmMBIBEIMBAR 8 6 8 8
OBmROBAEMOO 3 2 6 8
BRmBIDREAIMBA 8 6 9 8




4.0 A Look at the General Circulation on a Short Time Scale - March 1970

Many features of the general circulation can be seen by looking at
the March 1970 cloud cover, Fig. A-1. The number of cloudy days over
the Eastern U. S. was well above normal which correlates well with the
mean trough position shown in Fig. 1. In the Pacific, wind speeds were
as much as 14 m sec-1 faster than normal along a jet maximum that was
located very near the March normal (Fig. 2) and thus accounts for the
cloudiness seen in the mid-Pacific. The east coast of mainland China
was frequented by copious cloudiness of prolonged duration (Figure
A-2 and A-3), which can be explained by a major stationary trough
in the western Pacific (Fig. 1). The Himalaya Mountains which have a
high albedo due to snowpack in the spring are depicted well in Figures
A-1, A-2, and A-3. Even though thin cirrus clouds do not have a high
enough albedo to appear in this study, areas with large intertrdpical
convergence and thick cloud cover appear in the western Pacific from
1-6° N (Fig. A-1).

Temperatures in the U. S. were below normal in March 1970 because
the mean storm track was much further south than normal (Fig. 2). High-
est percentages of normal precipitation were generally consistant with the
southward track of synoptic scale cyclones. Heavy precipitation combined
with below normal temperature anomalies, produced exceptionally heavy
snowfall throughout most of the eastern three-fourths of the U. S. (Fig. 3)
Undoubtedly the albedo of this abnormal snowfall accounts for most of
the ''cloudy" days over the U. S. (Fig. A-1) during this time period, as
strong and persistent background brightness of ice, sand and snow are

similar to the brightness of extremely cloudy areas.



' MARCH 1970

FIGURE 1 -- Mean 700-mb contours (decameters) for March 1970.
(after Green 1970).
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Background also accounts for most of the '"cloudy' days poleward of
50°N during this month. Geographical features such as the deserts of
Saudi Arabia and North Africa, and the Greenland ice cap (Fig. A-1, A-2
and A-3) are clearly delineated. Noticeably clear areas exist over
regions dominated by the subtropical highs in the Atlantic and Pacific
oceans.

Note shoﬁld be made that May, June and July 1969 not only portray
desert areas very poorly, but cloud cover too. This discrepancy is
due to instrument degradation of the Advanced Vidicon Camera System
(AVCS) aboard ESSA 9. Taylor and Winston (1968) have shown how bright-
ness values can vary substantially with time due to changes in camera

calibration and degradation in camera response.
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5.0 Northern and Southern Hemisphere Seasonal Summaries

Northern Hemisphere - Winter (December, January and Febraury)

Caution must be exercised when analyzing the winter season because
of the magnitude of the background problem, as grid locations poleward
of 40°N may actually have more background reported than actual cloud
cover. Equatorward of 40°N one can immediately detect the mean location
of the subtropical highs and also the Intertropical Convergence Zone (ITC)
(Fig. A-4). The total number of cloudy days and also the persistence
of cloud cover in the ITC is not as great as one would anticipate due to
the poor reflectivity and variability of the cirrus cloudiness in this
region (Fig. A-4 and A-5). Thick persistent cloud cover may be detected
in the regions of climatological troughing (Gulf of Alaska, East China and
the east coast of the U. S.). Up to 23 occurrences of 3 consecutive days
of cloudiness were detected in the Gulf of Alaska and 12 off the China
coast. The maximum of cloud cover over the Pacific may be attributed to

the jet stream which was centered around 40°N.-

Spring (March, April and May)

Climatologytpredicts the strengthening of the subtropical highs in
the Spring. This theory can readily be verified from Fig. A-6 which
shows that vast areas of the Atlantic and Pacific are cloud free. Less
persistent cloud cover in the ITC (see Fig. A-7) is evidenced in spring
than was present in winter. Trough positions remain in approximately the
same location as they were in winter, but the jet stream over the Pacific

has exhibited a 50 meridional migration toward the pole. The persistent
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cloud pattern has greatly diminished in intensity with a maximum of 14
occurrences of 3 consecutive days of cloudiness off the China coast and

only 3 occurrences in the Gulf of Alaska.

Summer (June, July and August)

One of the major summertime features of interest is the Indian/
Southeast Asia monsoon caused by an inflow of moisture from sea toward
land. Fig. A-8 and A-9 show a greater persistence and total cloud
cover over this region than could be seen in winter or spring. With
the subtropical high a maximum, the troughs are at a minimum and this
is reflected by a drastic reduction of cloudiness over China, the Gulf
of Alaska and the western Atlantic. Another explanation of the weak
seasonal response is the degradation of the AVCS units which were
brought back to original specifications in late July. Mention should
also be made of the slight northward movement of the ITC and the jet
stream. Some stratus type cloudiness is in evidence froﬁ the west
coast of Central America to southern California consisting of 20 days
of opaque cloudiness which has a maximum of 6 occurrences of 3 consecu-
tive cloudy days. Background noise at higher latitudes is much re-

duced over wintertime conditions.

Fall (September, October and November)
Autumnal cloud cover shows a marked change from the summertime pat-

tern just discussed. Fig. A-10 and A-11 depict an abrupt transition in
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progress. Some persistent cloud cover still lingers over India and
Southeast Asia, while the troughs reassert themselves over the east
coast of China, the Gulf of Alaska and the western Atlantic. The ITC
has strengthened in total cloud amount but not in persistence as winter
approaches. Fall is the hurricane seasonand the increased oceanic
cloud cover may be attributed to these devasting storms. Stratus re-
mains off the Central America and California coast, but will rapidly
fade with the onset of winter. The most persistent cloudiness appears
just south of Greenland where there were 20 occurrences of 3 consecu-
tive cloudy days. Finally, one can detect a southward movement in the

jet stream, especially over the Pacific.

Southern Hemisphere - Winter (June, July and August)

Climatology would predict an intensification and extension of the
subtropical high during winter. Coupled with poor AVCS reéponse for
this same time period in the northern hemisphere, one would expect
little cloudiness. This is readily apparent from the information
displayed in Figures B-1 and B-2.

Perhaps most obvious from these figures is the stratus cloudiness
off the west coasts of Africa and South America. Figure B-1 shows a
maximum of 27 cloudy days off the African coast and 31 days off the
South American coast. This cloud cover displays a tendency toward
being persistent with up to 14 occurrences of 3 consecutive cloudy
days. One may also note that this type of cloudiness, associated with
oceanic upwelling, is present to a much smaller extent in the other

seasons.
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Previous estimates by Lamb (1958) point out that the Antarctic ice
field would not extend equatorward of 609S during the winter. At first
glance one would tend to attribute the circumpolar brightness to back-
ground, but since Lamb has shown this region to be free of ice, one
must attribute the brightness response to the intense circumpolar trough.
More persistent cloud cover is seen in the area bounded by 10°E - 50%W
and 50° - 60°s than at any other southern hemisphere location during this
season (Figure B-2). Other regions of the southern hemisphere are nearly
void of persistent cloudiness and should not pose a problem for remote
sensing of the atmosphere.

A comet shaped cloud pattern in the Pacific is distinguishable in all
four seasons. This type of formation represents the stagnation of frontal
systems and a large area of surface convergence. These stagnant systems
dissipate after several days, providing little persistent cloud cover with
a maximum of 6 occurrences of 3 consecutive days of opaque cloudiness.

Some cdnvective cloudiness is visible in the region 1 - 10°S and
70° to 100°E, accounting for 20 cloudy days, but only 7 occurrences of

3 consecutive cloudy days.

Spring (September, October and November)

Continental heating is beginning to increase cbnvective activity
over Africa and South America while other features closely resemble
the winter season (see Figures B-3 and B-4). An apparent deepening in
the circumpolar trough which may actually be due to improved AVCS re-

sponse has achieved more cloudiness in the latitude belt 50 - 60°S,
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but as in the winter season, the most persistent cloudiness appears in
the region bounded by 10°w - 30°E and 50 - 60°s.

In the Pacific, the comet type pattern of cloud cover still exists
but is predominantly transient in nature showing a maximum of 8 occur-
rences of 3 consecutive cloudy days. Cloudiness has increased consi-
derably off the southeast coast of South America with a maximum of 30
cloudy days, but this cloudiness too is transient in nature with a

maximum of 8 occurrences of 3 consecutive cloudy days.

Summer (December, January and February)

Most noticeable on the summer representation is the lack of stratus
clouds off the coasts of South America and Africa (Figures B-5 and B-6).
As expected, convection over the continental areas is a maximum while
the bulk of the cloudiness over the Pacific has moved westward leaving
a vast area of the eastern Pacific void of any cloudiness whatsoever.
Much more equatorial development is present during the summer season,
but it generally lacks any persistent nature.

Cloudiness in the circumpolar trough which has weakened somewhat
from it's winter maximum has remained constant with regard to the total
number of cloudy days, but has become less persistent than previous
months with énly selected locations showing more than 10 occurrences

of 3 consecutive cloudy days.
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Fall (March, April and May)

Perhaps the best time to conduct remote sensing experiments would
be in the southern hemisphere fall. The number of cloudy days on a
hemispheric séale has been drastically reduced (Fig. B-7) and the areas
of persistent cloudiness (Figure B-8) are almost non-existent.

In general, the same features of the general circulation are pre-
sent in the fall as in the other seasons. Stratus clouds are beginning
to appear off the South American and African coasts, the minor Pacific
trough has induced some cloudiness and there is still some convective

cloudiness over the continental regions.
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6.0 Interannual Variations of Cloudiness

Also processed were 3 additional months of data (Oct. 1970, January
and July 1971) from the Improved Tiros Operational Satellite (ITOS 1)
to provide a check on the interannual variations of opaque.cloudiness.
Like the ESSA 9 satellite, ITOS 1 employs the AVCS system and has a local
time equator crossing of about 1500 L. In general, the ITOS 1 vidicon
was more responsive than the ESSA 9 vidicon, requiring some calibration
to bring the two vidicons into synchronization. This Qas accomplished by
allowing no tolerance for instrument dropout in brightness intervals 1

and 2 on the ITOS 1 data.

October 1969 vs October 1970

Comparison of the interannual‘variation of cloud cover may be made
from Figures C-1 and C-2, between October 1969 and chober 1970 in the
southern hemisphere. The general features are very similar with con-
vection over the continents and in the equatorial region from 80° -
100°E, stratus cloudiness off the coasts of South America and Africa,
Pacific cloudiness and cloudiness associated with the circumpolar
trough. The interannual variations of persistent cloudiness (Figures
C-3 and C-4) show a greater variation than one would expect. While
the stratus cloudiness has increased in persistence off the coasts of
Africa and South America, there is a marked decrease in persistence

near the circumpolar trough in October of 1970.
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January 1970 vs January 1971

A striking similarity exists in the persistence of cloudiness during
the southern hemisphere summer between January of 1970 and January of
1971. (see Figures C-5 and C-6). Primarily the difference can be found
in the equatorial region from 170°W - 160°E. No explanation is offered
as to why there was more convection in this region during the summer of

1970.

July 1970 vs July 1971

July would make for a poor comparison of interannual variations of
cloudiness owing to the weak response of both AVCS cameras on ESSA 9,
s0 no attempt will be made to make such a comparison even though such

data is available.
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7.0 Annual Summary

Northern Hemisphere

On an annual basis, background noise is particularly hard to distin-
guish from cloudiness. The northern latitudes in Figures D-1 and D-2
reveal not only the maximum opaque cloudiness but also the most persistent.
Caution should be used in interpreting this data because the annual summary
is actually an annual average, i.e., the four seasonal summaries have
been summed and divided by four to give the resultant data. Hence, this
data is actually a seasonal average and not an annual summary.

The ITC which is clearly visible in Figure D-1 is absent from Fig.
D-2. This area then would pose little problem to remote sounding of the
atmosphere. Near New Foundland one can see 12 occurrences of 3 consecutive
cloudy days, probably due to stratus cloudiness which in general has low

tops, and would not pose a serious problem to remote sensing.

Southern Hemisphere

Background is not nearly the problem in the southern hemisphere as
it was in the northern hemisphere and thus the southern hemisphere is a
better indicator of true cloudiness. Figures D-3 and D-4 indicate vast
amounts of cloudiness but little persistent cloud cover outside of the
circumpolar trough. It is evident that the region 50° - 60°S will present

a serious problem for remote sounding of the atmosphere.
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8.0 Summarz

Caution mﬁst be exercised with regard to the ESSA vidicon data as
AVCS degradation and apparent lack of calibration would preclude the
use of this data for many meteorological purposes. This study was com-
pleted only after a careful comparison between the ESSA.Q and Nimbus 3
data revealed a general correlation between regions of extreme ESSA
brightness (binary indicators) and Nimbus albedo. This relationship
denies however, the capability to distinguish background froh true
cloud cover. Yet another shortcoming of the AVCS data is the failure
to distinguish cloud tops - a serious consideration in many meteorological
applications. A more appropriate approach would take into
consideration simultaneous use of infrared radiation measurements
with the reflected solar radiation data (Vonder Haar, 1970).
In short, this study has been designed to give an overall view
of the seasonal course of persistent opaque cloudiness. Results must
be carefully reviewed to take into account background response which
simulates actual cloudiness. It was found that in the northern hemisphere
an annual summary is not really a sufficient summary because of the high
seasonal variation of albedo. On the other hand, the southern hemiéphere
annual summary is much more indicative of true opaque cloudiness which
seems to be most persistent in the circumpolar trough 50 - 60°s.
Throughout the text, comments regarding occurrence of persistent
opaque cloudiness as a function of time and location have a variety of

meteorological applications.
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FIGURE A-10: Number of cloudy days September 1969, October 1969 and November 1969
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FIGURE D-2: Number of occurrences of 3 consecutive cloudy days (annual)
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FIGURE D-3: Number of cloudy days (annual)
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